Реферат: Основные этапы исторического развития естествознания

Дальневосточная Академия государственной службы

заочное отделение

Контрольная работа

по дисциплине:  «Концепции современного естествознания»

Тема: Основные этапы исторического развития естествознания.

Хабаровск, 2001 г.


ВВЕДЕНИЕ

Глава 1. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЕСТЕСТВОЗНАНИЯ

1.1. Древнегреческий период.

1.2. Эллинистический период.

1.3. Древнеримский период античной натурфилософии.

1.4. Вклад Арабского мира в развитие естествознания.

5. Естествознание в средневековой Европе.

1.6. Этап, называемый «научной революцией».

Глава 2. ВОЗНИКНОВЕНИЕ НАУЧНОГО ЭКСПЕРИМЕНТА,  КАК МЕТОДА ИССЛЕДОВАНИЯ

Глава 3. РЕВОЛЮЦИИ В ЕСТЕСТВОЗНАНИИ

ЗАКЛЮЧЕНИЕ

Список использованной литературы.

«Движение науки нужно сравнивать не с перестройкой какого-нибудь города, где старые здания немилосердно разрушаются, чтобы дать место новым постройкам, но с непрерывной эволюцией зоологических видов, которые беспрестанно развиваются и в конце концов становятся неузнаваемыми для простого глаза, но в которых опытный глаз всегда откроет следы предшествующей работы прошлых веков» [1]

В ВЕДЕНИЕ

 

Концепция современного естествознания – новый предмет в системе высшего образования. Насколько же нужно знать современную науку человеку, который скорее всего, никогда сам не будет работать в ней?

Ответом на этот вопрос могут служить строчки из введения к новому учебнику по «Концепции современного естествознания»: «В наши дни ни один человек не может считаться образованным, если он не проявляет интереса к естественным наукам… Дело в том, что наука – это не только собрание фактов об электричестве и т.п. Это одно из наиболее важных духовных движений наших дней.

Наука – это не только совокупность знаний. Науке можно учить, как увлекательнейшей части человеческой истории – как быстро развивающемуся росту смелых гипотез, контролируемых экспериментом и критикой. Преподаваемая… как часть истории «естественной философии» и истории проблем и идей, она могла бы стать основой нового свободного университетского образования, целью которого было бы готовить, по крайней мере, людей, которые могли бы отличить шарлатана от специалиста»[2]

Итак, естествознание — неотъемлемая и важная часть духовной культуры человечества. Знание его современных фундаменталь­ных научных положений, мировоззренческих и методологичес­ких выводов является необходимым элементом общекультур­ной подготовки специалистов в любой области деятельности. Поэтому, изучение естественных наук – важный фактор для подготовки современных образованных специалистов.

Изучение современной науки необходимо начинать с изучения истоков – потому что именно там закладывались ее основы.

Историю развития естествознания можно проследить с VI в. до н.э. Начиная с эпохи Коперника история естествознания рас­сматривается в свете научных революций, связанных с выявлени­ем фундаментальных принципов природы.

Этапов выделяют иногда три-четыре, иногда бо­лее десяти. Переходы от этапа к этапу и от одной научной революции к другой не похожи на триумфальное шествие человеческой мысли. Основные направления ее развития возникали в результате перебора многих «окольных путей», отступлений, «периодов топ­тания на месте».

 

Глава 1. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ЕСТЕСТВОЗНАНИЯ

Самыми древними науками можно считать астрономию, гео­метрию и медицину, созданные жрецами Египта и Междуречья. Большие успехи в данных направлениях были достигнуты также в Древнем Китае и Древней Индии. Следует отметить определенные взаимосвязи, существовавшие между этими регионами Древнего Востока. Астрономия и медицина не представляли собой в те вре­мена отдельных наук, а были прочно вплетены в ткань философс­ко-религиозной мысли. Математика начала развиваться для нужд астрономии, но именно математика, по мнению ряда ученых, яв­ляется единственной наукой, сформировавшейся в Древнем Мире.

Формирование наук осуществлялось очень медленно. «Принято считать, что к середине XVIII в. сформировались только четыре науки: механика, физика, математика и астрономия. Великие системы биологии, как и первые основные законы химии, пришлись на конец XVIII — начало XIX в., основные идеи геологии находи­лись в то время в стадии формирования»[3].

 

1.1. Древнегреческий период.

 

Естественнонаучные знания Древнего Востока проникли в Древнюю Грецию в VI в. до н.э. и обрели ста­тус науки как определенной системы знаний. Эта наука называ­лась натурфилософией (от лат. natura — природа). Натурфилософы были одновременно и философами, и учеными. Они воспринима­ли природу во всей ее полноте и были исследователями в различ­ных областях знания. Эта стадия развития науки характеризуется концептуальным хаосом, проявлением которого и стала конку­ренция различных воззрений на природу. Во всех трудах древнегре­ческих ученых естественнонаучные идеи тонко вплетены в фило­софскую нить их мысли.

В VI в. до н.э. в древнегреческом городе Милете возникла первая научная школа, известная прежде всего не своими достижениями, а своими исканиями. Основной проблемой этой школы была про­блема первоначала всех вещей: из чего состоят все вещи и окружа­ющий мир? Предлагались разные варианты того, что считать пер­воосновой всех вещей: огонь (Гераклит), вода (Фалес), воздух (Анак-симен), апейрон (Анаксимандр). Следует особо подчеркнуть, что эти первоосновы не сводились просто к огню, воздуху или воде. На­пример, Фалес понимал под «водой» текучую субстанцию, охва­тывающую все существующее в природе. Обычная вода входит в это обобщенное понятие как один из элементов.

Другое научное сообщество рассматриваемого периода, пифа­горейцы, в качестве первоначала мира — взамен воды, воздуха или огня — ввели понятие числа. Они также отмечали связь между законами музыки и числами. Согласно их учению, «элементы чи­сел должны быть элементами вещей». Пифагор (582—500 гг. до н.э.) был не только известным математиком и астрономом, но и ду­ховным лидером своих учеников и многих ученых того времени. Пифагорейцы проповедовали тип жизни в по­исках истины, научное познание, которое, как они считали, и есть высшее очищение - очище­ние души от тела. Следует отметить, что пифагорейские числа не соответствуют современным абстрактным представлениям о них. Пифагорейское число тянуло за собой длинный «шлейф» физи­ческих, геометрических и даже мистических понятий.

Исследование первоосновы вещей вслед за учеными милетской школы были продолжены Демокритом (ок. 460-370 гг. до н.э.) и его учителем Левкиппом, которые ввели понятие атома. Новое учение, атомистика, утверждало, что все в мире состоит из ато­мов — неделимых, неизменных, неразрушимых, движущихся, не­возникающих, вечных, мельчайших частиц. Учение об атоме явилось гениальной догадкой, которая намного опередила свое время и служила источником вдохновения для многих его последователей.

Самой яркой фигурой античной науки того периода был вели­чайший ученый и философ Аристотель (384-322 гг. до н.э.), авто­ритет которого был незыблемым более полутора тысяч лет. Аристотель в совершенстве освоил учение своего учителя Платона, но не повторил его путь, а пошел дальше, выбрав свое собственное направление в научном поиске. Если для Платона было характерно состояние вечного по­иска без конкретной окончательной позиции, то научный дух Ари­стотеля вел его к синтезу и систематизации, к постановке про­блем и дифференциации методов. Он наметил магистральные пути развития метафизики, физики, психологии, логики, а также эти­ки, эстетики, политики.

Сочинения Аристотеля разнообразны по тематике, многочис­ленны по объему и значительны по влиянию, которое они оказа­ли на дальнейшее развитие различных наук. Среди его естествен­но-научных работ следует выделить прежде всего «Категории», «Об истолковании», «Физика», «О небе», «Метеорологика», «Мета­физика», «История животных», «О частях животных», «О пере­движении животных», трактаты по логике. Во многих из этих книг Аристотель продемонстрировал всесторонние и глубокие по тому времени знания.

Аристотель разделял все науки на три больших раздела: науки теоретические и практические, которые добывают знания ради достижения морального совершенствования, а также науки про­дуктивные, цель которых — производство определенных объектов. Формальная логика, созданная Аристотелем, просуществовала в предложенной им форме вплоть до конца XIX в.

Зарождение медицины как самостоятельного научного знания связано с именем Гиппократа (460—370 гг. до н.э.), который при­дал ей статус науки и создал эффективно действующий метод, преемственно связанный с ионийской философией природы. За этим методом стояли усилия древних философов дать естествен­ное объяснение каждому явлению, найти его причину и цепочку следствий, веру в возможность понять все тайны мира. Медицинс­кие труды Гиппократа многочисленны и разнообразны. Основной его тезис: медицина должна развиваться на основе точного мето­да, систематического и организованного описания различных за­болеваний.

 

1.2. Эллинистический период.

Первой из эллинистических школ была школа Эпикура (341—270 гг. до н.э.). Эпикур делил филосо­фию на три части: логику, физику и этику. Эпикурейская физи­ка — это целостный взгляд на реальность. Эпикур развил идеи атомистики, заложенные Левкиппом и Демокритом. В его школе было показано, что атомы различаются весом и формой, а их раз­нообразие не бесконечно. Для объяснения причины движения ато­мов Эпикур ввел понятие первоначального толчка (первотолчка).

С 332 г. до н.э. началось сооружение города Александрии, кото­рый стал основным научным центром эллинистической эпохи, центром притяжения ученых всего средиземноморского региона.

В Александрии был создан знаменитый Музей, где были собраны необходимые инструменты для научных исследований: биологи­ческих, медицинских, астрономических. К Музею была присоеди­нена Библиотека, которая вмещала в себя всю греческую литера­туру, литературу Египта и многих других стран. Объем этой Биб­лиотеки достигал 11,7 тыс. книг, в ней нашла отражение культура всего античного мира.

В первой половине III в. до н.э. в Музее велись серьезные меди­цинские исследования. Герофил и Эрасистрат продвинули анато­мию и физиологию, оперируя при помощи скальпеля. Герофилу медицина обязана многими открытиями. Например, он доказал, что центральным органом живого организма является мозг, а не сердце, как думали ранее. Он изучил разновидности пульса и его диагностическое значение.

В эллинистический период начали составляться труды, объе­динявшие все знания в какой-либо области. Так, например, одно­му из крупнейших математиков того периода Евклиду принадле­жит знаменитый труд «Начала», где собраны воедино все дости­жения математической мысли. Опираясь на аристотелевскую логику, он создал метод аксиом, на основе которого построил все здание геометрии. По сути аксиомы есть фундаментальные утверждения интуитивного характера. Часто в виде аргументации Евклид ис­пользовал метод «приведения к абсурду».

Выдающимся ученым эллинистического периода был матема­тик-теоретик Архимед (287—212 гг. до н.э.). Он был автором многих остроумных инженерных изобретений. Его баллистические орудия и зажигательные стекла использовались при обороне Сиракуз. Среди множества работ особое значение имеют следующие: «О сфере и цилиндре», «Об измерении круга», «О спиралях», «О квадратуре параболы», «О равновесии плоскости», «О плавающих телах». Архи­мед заложил основы статики и гидростатики.

Систематизатором географических знаний был друг Архимеда Эрастофен. Исторической заслугой Эрастофена яви­лось применение математики к географии для составления первой карты с меридианами и параллелями.

Следует отметить, что в рассматриваемый период завершили свое формирование основополагающие элементы наиболее древних наук — математики (прежде всего геометрии), астрономии и медицины. Кроме того, началось формирование отдельных есте­ственных наук, методами которых могут считаться наблюдение и измерение. Все эти науки создавались жрецами Египта, волхвами и магами Междуречья, мудрецами Древней Индии и Древнего Китая. Натурфилософы Древней Греции были теснейшим образом связаны с этими жрецами, а многие являлись их непосредствен­ными учениками. Все науки того времени были тесно вплетены в философско-религиозную мысль и по существу считались знанием элиты (религиозной или философской) древнего общества[4].

1.3. Древнеримский период античной натурфилософии.

В 30-х гг. до н.э. новым научным центром становится Рим со своими интересами и своим духовным климатом, ориентированным на практичность и результативность. Закончился период расцвета великой эллинис­тической науки. Новая эпоха может быть представлена работами Птолемея в астрономии и Галена в медицине.

Птолемей жил, возможно, в 100-170 гг. н.э. Особое место сре­ди его работ занимает «Великое построение» (в арабском перево­де — «Альмагест»), которая является итогом всех астрономических знаний того времени. Эта работа посвящена математическому опи­санию картины мира (полученной от Аристотеля), в которой Солн­це, Луна и 5 планет, известных к тому времени, вращаются вокруг Земли. Из всех наук Птолемей отдает предпочтение математике ввиду ее строгости и доказательности. Мастерское владение математическими расчетами в области астрономии совмещалось у Птолемея с убеж­дением, что звезды влияют на жизнь человека. Геоцентрическая картина мира, обоснованная им математически, служила основой мировоззрения ученых вплоть до опубликования труда Н.Копер­ника «Об обращении небесных сфер».

Наука античного мира обязана Галену (130-200 гг.?) система­тизацией знания в области медицины. Он обобщил анатомические исследования, полученные медиками александрийского Музея; ос­мыслил элементы зоологии и биологии, воспринятые от Аристо­теля; теорию элементов, качеств и жидкостей системы Гиппокра­та. К этому можно добавить его телеологическую концепцию.

 

1.4. Вклад Арабского мира в развитие естествознания.

В эпоху Средних веков возросло влияние церкви на все сферы жизни общества. Европейская наука переживала кризис вплоть до XII-XIII вв. В это время эстафету движения научной мысли Древ­него Мира и античности перехватил Арабский мир, сохранив для человечества выдающиеся труды ученых тех времен. Ф. Шиллер писал, что арабы как губка впитали в себя мудрость античности, а затем передали его Европе, перешедшей из эпохи варварства в эпоху Возрождения[5].

Ислам, объединив всех арабов, позволил им потом в течение двух-трех поколений создать огромную импе­рию, в которую помимо Аравийского полуострова вошли многие страны Ближнего Востока, Средней Азии, Северной Африки, половина Пиренейского полуострова. Развитие исламской государ­ственности в VIII—XII вв. оказало благотворное влияние на обще­мировую культуру. К Х в. сформировались наиболее крупные куль­турные центры Арабского мира: Багдад и Кордова. В этих городах было много общественных библиотек, книжных магазинов, суще­ствовала мода и на личные библиотеки.

Арабский мир дал человечеству много выдающихся ученых и организаторов науки. Так, например, Мухаммед, прозванный аль-Хорезми (первая половина IX в.) был выдающимся астрономом и одним из создателей алгебры; Бируни (973-1048) — выдающийся астроном, историк, географ, минералог; Омар Хайям (1201— 1274) — философ и ученый, более известный как поэт; Улугбек (XV в.) — великий астроном и организатор науки, один из на­следников Тимура, а также Джемшид, Али Кушчи и многие дру­гие ученые.

Аль-Хорезми значительно улучшил таблицы движения планет и усовершенствовал астролябию — прибор для определения поло­жения небесных светил. Бируни со всей решительностью утверж­дал, что Земля имеет шарообразную форму, и значительно уточ­нил длину ее окружности. Он также допускал вращение Земли вокруг Солнца. Омар Хайям утверждал, что Вселенная существует вечно, а Земля и другие небесные тела движутся в бесконечном пространстве.

 

5. Естествознание в средневековой Европе.

В то же самое время в Европе читали, главным образом, Библию, предавались рыцарским турнирам, войнам, походам. Была распространена куртуазная лите­ратура, посвященная прекрасным дамам и рыцарской любви. Толь­ко единицы имели склонность к философии и серьезной литературе времен античности.

Однако естествознание развивалось и в средневековой Европе, причем его развитие шло по самым разным путям. Особо необходимо упомянуть поиски алхимиков и влияние университетов, ко­торые были чисто европейским порождением. Огромное число от­крытий в алхимии было сделано косвенно. Недостижимая цель (философский камень, человеческое бессмертие) требовала конк­ретных шагов, и, благодаря глубоким знаниям и скрупулезности в исследованиях, алхимики открыли новые законы, вещества, хи­мические элементы.

С XIII в. в Европе начинают появляться университеты. Самыми первыми были университеты в Болонье и Париже. Благодаря уни­верситетам возникло сословие ученых и преподавателей христиан­ской религии, которое можно считать фундаментом сословия ин­теллектуалов.

1.6. Этап, называемый «научной революцией».

Периодом «научной революции» иногда называют время между 1543 и 1687 гг.

Первая дата соответствует публикации Н. Копер­ником работы «Об обращениях небесных сфер»; вторая — И. Нью­тоном «Математические начала натуральной философии».

Все на­чалось с астрономической революции Коперника, Тихо Браге, Кеплера, Галилея, которая разрушила космологию Аристотеля — Птолемея, просуществовавшую около полутора тысяч лет.

Þ  Копер­ник поместил в центр мира не Землю, а Солнце;

Þ  Тихо Браге — идейный противник Коперника — движущей си­лой, приводящей планеты в движение, считал магне­тическую силу Солнца, идею материального круга (сферы) заменил совре­менной идеей орбиты, ввел в практику наблюдение пла­нет во время их движения по небу;

Þ  Кеплер, ученик Браге, осуществил наиболее полную обработку результатов наблюдений своего учителя: вместо круговых орбит ввел эллип­тические он количественно опи­сал характер движения планет по этим орбитам;

Þ  Галилей показал ошибочность различения физики земной и физики небесной, доказывая, что Луна имеет ту же природу, что и Земля, и формируя принцип инерции. Обосновал автономию научного мышления и две но­вые отрасли науки: статику и динамику. Он «подвел фундамент» под выдающиеся обобщения Ньютона, которые мы рассмотрим далее.

Þ  Данный ряд ученых завершает Ньютон, который в своей теории гравитации объеди­нил физику Галилея и физику Кеплера.

В течение этого периода изменился не только образ мира. Из­менились и представления о человеке, о науке, об ученом, о научном поиске и научных институтах, об отношениях между наукой и обществом, между наукой и философией, между научным знани­ем и религиозной верой. Выделим во всем этом следующие основ­ные моменты.

1. Земля, по Копернику, — не центр Вселенной, созданной Богом, а небесное тело, как и другие. Но если Земля — обычное небесное тело, то не может ли быть так, что люди обитают и на других планетах?

2. Наука становится не привилегией отдельного мага или про­свещенного астролога, не комментарием к мыслям авторитета (Ари­стотеля), который все сказал. Теперь наука — исследование и рас­крытие мира природы, ее основу теперь составляет эксперимент. Появилась необходимость в специальном строгом языке.

3. Наиболее характерная черта возникшей науки — ее метод. Он допускает общественный контроль, и именно поэтому наука ста­новится социальной.

4. Начиная с Галилея наука намерена исследовать не что, а как, не субстанцию, а функцию[6].

Научная революция порождает современного ученого-эксперимен­татора, сила которого — в эксперименте, становящемся все более и более точным, строгим благодаря новым измерительным прибо­рам. Новое знание опирается на союз теории и практики, который часто получает развитие в кооперации ученых, с одной стороны, и техников и мастеров высшего разряда (инженеров, художников, гидравликов, архитекторов и т.д.) — с другой.

Возникновение нового метода исследования – научного эксперимента оказало огромное влияние на дальнейшее развитие науки.

Глава 2. ВОЗНИКНОВЕНИЕ НАУ ЧНОГО ЭКСПЕРИМЕНТА,  КАК МЕТОДА ИССЛЕДОВАНИЯ

Основной метод исследований Нового времени — научный эксперимент, который отличается от всех возможных наблюде­ний тем, что предварительно формулируется гипотеза, а все на­блюдения и измерения направлены на ее подтверждение или оп­ровержение.

Экспериментальный метод начал готовить к разработке еще Леонардо да Винчи (1452-1519). Но Леонардо жил за сто лет до этой эпохи, и у него не было соответствующих технических воз­можностей и условий. Не разработана была также логическая струк­тура экспериментального метода. Эксперименту Леонардо да Винчи недоставало строгости оп­ределений и точности измерений, но можно только восхищаться универсальностью ума этого человека, которой восторгались его современники и которая поражает сегодня нас. С методологической точки зре­ния Леонардо можно считать предшественником Галилея. Помимо опыта он придавал исключительное значение математике. «Лучше маленькая точность, чем большая ложь», — утверждал он[7].

Начало экспериментальному методу Нового времени положи­ло изобретение двух важнейших инструментов: сложного микро­скопа (ок. 1590 г.) и телескопа (ок. 1608 г.). Уже древние греки были знакомы с увеличительной силой линзовых стекол. Но сущ­ность и микроскопа, и телескопа заключается в соединении не­скольких увеличительных стекол. По-видимому, первоначально такое соединение произошло случайно, а не под влиянием какой-нибудь руководящей теоретической идеи. Первый микроскоп изоб­рел, по всей видимости, голландский шлифовальщик стекол Захарий Янсен, первую подзорную трубу — голландский оптик Франц Липперстей.

С появлением телескопов развитие астрономии поднялось на качественно новый уровень. Были открыты (еще Галилеем) четы­ре наиболее крупных спутника Юпитера, множество новых, не видимых невооруженным взглядом, звезд; было достоверно уста­новлено, что туманности и галактики являются огромным скопле­нием звезд. Кроме того, были обнаружены темные пятна на Солн­це, которые вызвали особые возражения и даже ярость руководи­телей католической церкви.

К середине XVII в. выдающийся астроном Гевелий изготовил первую карту Луны. Именно он впервые предложил принятые в настоящее время названия темных пятен Луны — океаны и моря. Гевелию удалось наблюдать девять больших комет, что положило начало их систематическому исследованию.

В конце века Тихо Бра­ге усовершенствовал технику наблюдений и измерений астроно­мических явлений, достигнув предела возможностей использованного им оборудования. Он также ввел, как отмечалось выше,  в практику наблюдения пла­нет во время их движения по небу.

В Новое время, во многом благодаря экспериментальному методу, были объяснены многие довольно простые яв­ления, над которыми человечество задумывалось в течение многих веков, а также были высказаны идеи, определившие научные поиски на века вперед.

Þ   Законы функционирования линз удалось объяснить Кеплеру;

Þ   Проблему «почему вода в насосах не поднимается выше 10,36 м» - Торричелли сумел связать с давлением ат­мосферы на дно колодца.

Þ   Правильные объяс­нения приливов и отливов в морях и океанах, дали Кеплер (начало рассуждений) и Ньютон.

Þ   Причина цветов тел была установлена Ньютоном. Его теория цветов представляет собой одно из выдающихся достижений оп­тики, сохранившее значение до настоящего времени. Ньютон также начал разработку эмиссионной и волновой теорий света, современный фундамент которой создал Гюйгенс.

В XVI-XVII вв. наблюдается бурный расцвет анатомических исследований. В 1543—1544 гг. А. Везалий опубликовал книгу «О стро­ении человеческого тела», которая была прекрасно иллюстриро­вана и сразу же получила широкое распространение. Она считается первым скрупулезным описанием анатомии из всех известных человечеству. Но это было, если так можно выразиться, развитием статических представле­ний о человеческом теле.

У. Гарвей (1578—1657) продвинул дело гораздо дальше, начав развитие биологических аспектов механистической философии. Он заложил основы экспериментальной физиологии и правильно по­нял основную схему циркуляции крови в организме. Гарвей вос­принимал сердце как насос, вены и артерии — как трубы. Кровь он рассматривал как движущуюся под давлением жидкость, а ра­боту венозных клапанов уподоблял клапанам механическим. В спо­рах со своими коллегами Гарвей утверждал, что «никакого жиз­ненного духа» (эфирного тела) ни в каких частях организма не обнаружено.

Глава 3. РЕ ВОЛЮЦИИ В ЕСТЕСТВОЗНАНИИ

В истории естествознания процесс накопления знаний сменял­ся периодами научных революций, когда происходила ломка ста­рых представлений и взамен их возникали новые теории.

Крупные научные революции связаны с такими достижения человеческой мысли, как:

ü  учение о гелиоцентрической системе мира Н. Копер­ника,

ü  создание классической механики И. Ньютоном,

ü  ряд фунда­ментальных открытий в биологии, геологии, химии и физике в первой половине XIX столетия, подтвердившие процесс эволю­ционного развития природы и установившие тесную взаимосвязь многих явлений природы,

ü  крупные открытия в нача­ле XX столетия в области микромира, создание квантовой меха­ники и теории относительности.

Рассмотрим эти основные достижения.

R Польский астроном Н. Коперник в труде «Об обращении не­бесных сфер» предложил гелиоцентрическую картину мира вмес­то прежней птолемеевой (геоцентрической). Она явилась продол­жением космологических идей Аристотеля, и на нее опиралась религиозная картина мира. Заслуга Н. Коперника состояла также в том, что он устранил вопрос о «перводвигателе» движения во Вселенной, так как, согласно его учению, движение является есте­ственным свойством всех небесных и земных тел. Вполне понятно, что его учение не соответствовало мировоззрению католической церкви, и с этого времени начинается противостояние науки и церкви по главным вопросам, касающимся природы.

«Трудно переоценить значение и влияние гелиоцентрической кар­тины мира на все естественные науки. Это было поистине яркое событие в истории естествознания: вместо прежнего неверного каркаса мироздания была введена истинная система координат околоземного космоса»[8].

R Сравнимые по масштабу перемены в теоретической физике произошли в XVII в. Был осуществлен переход от аристотелевой физики к ньютоновой, которая господствовала в западной науке в течение трех столетий. Используя эту модель, физика достигла прогресса и выгодно отличалась от других дисциплин. Ее законы приобрели математическую формулировку, она доказала свою эф­фективность при решении многих проблем. С тех пор западная наука добилась крупных успехов и стала мощной силой, преобразую­щей мир. К тому же она определенным образом формировала ми­ровоззрение ученых. Вступала в силу механистическая картина мира.

R Говоря о создании механики Ньютоном, нельзя не упомянуть имя Галилео Галилея, который стоял у ее истоков. Его принцип инерции был крупнейшим достижением человеческой мысли: предложив его миру, он решил фундаментальную проблему — проблему движения. Уже одного этого открытия было бы достаточно для того, чтобы Галилей стал выдающимся ученым Нового времени.

Однако его научные результаты разнообразны и глубоки. Он исследовал свободное падение тел и установил, что скорость сво­бодного падения тел не зависит от их массы (в отличие от Арис­тотеля) и траектория брошенного тела представляет собой пара­болу. Известны его астрономические наблюдения Солнца, Луны, Юпитера. В работе «Диалог о двух системах мира — Птолемеевой и Коперниковой» он доказал правильность гелиоцентрической кар­тины мира, утверждению которой способствовали передовые уче­ные того времени.

R Первый закон механики Ньютона — это принцип инерции, сформулированный Галилеем. Во втором законе механики Ньютон утверждает, что ускорение, приобретаемое телом, прямо пропор­ционально приложенной силе и обратно пропорционально массе этого тела. И третий закон механики Ньютона есть закон действия и противодействия: действия двух тел друг на друга всегда равны по величине и противоположны по направлению. И еще один за­кон, предложенный Ньютоном, закон всемирного тяготения, зву­чит так: все тела взаимно притягиваются прямо пропорционально их массам и обратно пропорционально квадрату расстояния между ними. Это — универсальный закон природы, на основе которого была построена теория Солнечной системы.

«Механика Ньютона поражает своей простотой. Она имеет дело с материальными точками и расстояниями между ними и, таким образом, является идеализацией реального физического мира. Но благодаря этой простоте стало возможным построение замкнутой механической картины мира. Его теория использовала строгий матема­тический аппарат и опиралась на научный эксперимент. Именно такая тенденция наметилась в физике после его работ»[9].

Благодаря трудам Галилея и Ньютона XVIII век считается на­чалом того длительного периода времени, когда господствовало механистическое мировоззрение.

R Развитие биологии в XVIII веке также не обходилось без революционных открытий в то время шло своим путем:

Þ   Г. Мендель (1822-1884) от­крыл законы наследственности, скрещивая семена гороха в тече­ние восьми лет.

Þ   Исследуя бактерии, Л. Пастер показал, что они присутствуют в атмосфере, распространяются капельным путем и их можно разрушить высокой температурой. В XIX в. микробиоло­гия помогала побеждать инфекционные болезни.

Þ   Итогом раз­вития эволюционной концепции стала работа Ч. Дарвина (1809— 1882) «Происхождение видов путем естественного отбора» (1859). Эта теория имела такое же влияние на умы людей, какое в свое время имела теория Коперника. Это была научная революция в области биологии. Можно сказать, что коперниковская революция указала место человека в пространстве, а теория Дарвина опреде­лила место человека во временной шкале мира.

R Следующая научная революция, после которой резко измени­лась система взглядов и подходов, также связана с физикой. Это произошло в конце XIX — начале XX столетия. Толчком к построению новой физической картины мира послужил ряд новых эксперименталь­ных фактов, которые не могли быть описаны в рамках старых тео­рий, как это обычно бывает в науке. К таким фактам относятся прежде всего:

ü исследования Фарадея по электрическим явлениям,

ü работы Максвелла и Герца по электродинамике,

ü изучение явле­ния радиоактивности Беккерелем,

ü открытие первой элементарной частицы (электрона) Томсоном и т.д.

Проникая в область микромира, физики столкнулись с неожи­данными проявлениями физической реальности, для описания которой возникла потребность в новой теории, ибо сделать это с помощью классической механики не удавалось. Поэтапно, благодаря работам ряда физиков и глав­ным образом Бора, Гейзенберга, Шредингера, Планка, де Бройля и других, была построена физическая теория микромира, создана кван­товая механика. Согласно этой теории, движение микрочастиц в пространстве и времени не имеет ничего общего с механическим движением макрообъектов и подчиняется соотношению неопреде­ленностей: если известно положение микрочастицы в пространстве, то остается неизвестным ее импульс и наоборот.

R В 1905 г. А. Эйнштейн создал специальную теорию относитель­ности, в которой свойства пространства и времени связаны с ма­терией и вне материи теряют смысл. Эта теория дает преобразова­ние пространственных и временных координат тел, которые дви­гаются со скоростями, сравнимыми со скоростью света. Вторая часть теории, которая называется общей теорией относительнос­ти, связывает присутствие больших гравитационных полей (или массы) с искривлением пространства. Эта часть теории использу­ется в космологических моделях.

ЗАКЛ ЮЧЕНИЕ

Итак, историческое развитие человечества постоянно сопровождалось развитием науки.

Ученые, внесшие свой вклад в развитие науки, были яркими личностями - они сочетали в себе профессио­нальные качества в своей области с высокой культурой духа. Новые теории строились на основе не только строгого разума, но и высо­кой степени интуиции.

С тех пор прошло уже много времени.  Современная наука быстро прогрессирует и научные открытия совершаются на наших глазах.  Современное естествознание представляет собой сложную, развет­вленную систему множества наук. Ведущими науками XX в. по праву можно считать физику, биологию, науки о космосе, прикладную математику (неразрывно связанную с вычислитель­ной техникой и компьютеризацией), кибернетику, синергети­ку.

Но не только последние научные данные можно считать современными, а все те, которые входят в толщу современной науки, образуя ее краеугольные камни, поскольку наука не состоит из отдельных, мало связанных между собой теорий, а представляет собой во многом единое целое, состоящее из разновременных по своему происхождению частей.  

Список использованной литературы.

1.    Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998.

2.    Пуанкаре А. О науке. – М., 1983.

3.    Горелов А.А. Концепция современного естествознания. - М.: ЦЕНТР, 2000.

4.    Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000.

5.    Кун Т. Структура научных революций. - М., 1975.

6.    Селье Г. От мечты к открытию. – М., 1987.

7.    Кокин А.В. Концепции современного естествознания. – М.: «ПРИОР», 1998.

8.    Мотылева Л.С. и др. Концепции современного естествознания. — Спб.: Союз, 2000.

9.    Концепции современного естествознания /Под ред. В.Н. Лавриненко, В.П. Ратникова. — М.: ЮНИТИ-ДАНА, 2000.



[1] Пуанкаре А. О науке. – М., 1983 г.

[2] Горелов А.А. Концепция современного естествознания. - М.: ЦЕНТР, 2000 г.,  с. 10.

[3] Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998 г., с. 25.

[4] Солопов Е.Ф. Концепции современного естествознания. — М.: Гуманит. изд. центр ВЛАДОС, 1998 г., с. 27

[5] Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000. —с. 35

[6] Кун Т. Структура научных революций. - М., 1975 г., с. 65.

[7]Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания. — М.: Аспект Пресс, 2000. — с. 39.

[8] Кун Т. Структура научных революций. - М., 1975 г., с. 66.

[9] Данилова B.C., Кожевников Н.Н. Основные концепции современного естествознания: Учебн. пособие для вузов. — М.: Аспект Пресс, 2000. —  с. 44.

Постнеклассическое естественнонаучное образование
... наука в естественнонаучном цикле дисциплин: развитие и становление 1.1 Постнеклассическая парадигма естествознания: исторический аспект 1.2 Основные ...
Далее механика Ньютона дифференцируется по сферам приложения технологии: механика теоретическая, небесная механика, механика абсолютно твердого тела, механика сплошных сред ...
Классическая научная картина мира основана на достижениях Коперника, Галилея и Ньютона.
Раздел: Рефераты по философии
Тип: учебное пособие
История и философия науки
ОТВЕТЫ НА ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО КУРСУ "ИСТОРИЯ И ФИЛОСОФИЯ НАУКИ" 11. Культура античного полиса и становление первых форм теоретической науки. До ...
В Новое время один из основателей экспериментального естествознания Г. Галилей говорил о том, что тот, кто хочет решать вопросы естественных наук без помощи математики, ставит ...
Примерами таких революций являются создание гелиоцентрической системы мира (Коперник), формирование классической механики и экспериментального естествознания (Галилей, Кеплер и ...
Раздел: Рефераты по философии
Тип: шпаргалка
Что такое философия?
` Что такое философия? ` Краткий очерк истории философии ` Философская картина мира ` Философия человека ` Философия деятельности ` Задачи и ...
В это время механика была на подъеме (Ньютон незадолго до этого открыл основные законы механики) и философы стали очень многое уподоблять механическим процессам.
Вспомним Коперника и Галилея, выступивших против всеобщего заблуждения.
Раздел: Рефераты по философии
Тип: книга
Кандидатский по философии
08.00.10 "Финансы, денежное обращение и кредит" Ф И Л О С О Ф И Я Вопросы к вступительному экзамену по философии для поступающих в аспирантуру для ...
Своим появлением эта философия обязана и развитию естествознания, прежде всего математики, астрономии.
Открытия Галилея, Ньютона, законы сохранения, спектральный анализ показали единство физических законов и химического состава земных и небесных тел.
Раздел: Рефераты по философии
Тип: реферат
Птолемей
Введение Знаменитый александрийский астроном, математик и географ II века н. э. Клавдий Птолемей - одна из крупнейших фигур в истории науки эпохи ...
В истории же астрономии Птолемею не было равных на протяжении целого тысячелетия - от Гиппарха (II в. до н. э.) до Бируни (X-XI в. н. э.)
Крупнейшим после Аристотеля греческим ученым IV в. до н. э. был Евклид, чьи труды стали основой не только греческой, но и мировой математики.
На протяжении трех предшествовавших веков в астрономии шла борьба между сторонниками представлений Аристотеля о небесных сферах и системы мира Птолемея с ее сложной комбинацией ...
Раздел: Исторические личности
Тип: реферат