Реферат: Облик энергосбережения
Виталий ПРОХОРОВ, профессор кафедры отопления и вентиляции МГСУ
Проблема энергосбережения всегда сопутствовала энергопотреблению
Все последние годы в России интенсивно обсуждается проблема энергосбережения, в том числе в системах отопления и других системах инженерного оснащения зданий.
Принимаются решения, утверждаются нормативные документы как всероссийского, так и регионального предназначения. Принят закон РФ об энергосбережении. Проводятся бесчисленные совещания и научно-технические советы, «круглые столы» и академические чтения, съезды и симпозиумы, научно-практические конференции и выставки, ну и конечно, «саммиты». Во множестве выпускаются журналы, публикуются статьи и книги. Защищаются диссертации. Привлекаются зарубежные организации и эксперты.
И само собой разумеется, создаются многочисленные новые контролирующие органы и организации, с большими правами, например, по части запретов и штрафов, и одновременно - проведения работ по «хоздоговорам» между контролирующими и контролируемыми, вооруженные импортными дорогостоящими приборами, транспортом, обучающим персоналом, консультантами, экспертами, компьютерами, программами, специальными методиками, предписаниями и … непреодолимыми психологическими установками.
А кто из специалистов, или просто пытливых обывателей, засомневается в обоснованности, к примеру утвержденных СНиПов или региональных норм по энергосбережению в зданиях, или энергетического паспорта здания, того объявляют ретроградом, его работы – не соответствующими «перспективным интересам государства и общества» и опирающимися на «устаревшие технические решения» и зовущими «вернуться в прошлое» и «оставаться в плену отсталых представлений».
У авторов означенных определений в публикациях не возникает сомнения насчет качества нового, а именно, что оно может быть ухудшенным старым или просто ошибочным, т.е. наносить энерго-экономический ущерб государству.
Рассмотрим некоторые попытки решения обозначенной проблемы, начиная с прошлого и не проходя мимо «новизны» и «полезности» настоящего.
Человек заботится об экономии энергии с первых дней своего зарождения, а об экономии топлива – с момента обретения огня.
В первые тысячелетия тепловая энергия тратилась исключительно на обогрев людей и их жилища (отопление совместно с естественной вентиляцией), приготовление пищи и горячей воды. И было, конечно, небезразлично сколько носить дров для этих целей.
При этом сами жилища оборудовались в соответствии с природно-климатическими воздействиями на них окружающей среды и ресурсными возможностями обитающих в конкретном географическом месте людей.
Поэтому, как мы теперь говорим, удельная тепловая характеристика жилищ, конструкции, энергосберегающие и гигиенические свойства ограждений, источников и передатчиков тепла, топливных устройств, систем греющих и вентилирующих каналов с их регулирующими органами подчинялись не только общим закономерностям но и всегда несли отпечаток климатической обстановки расположения и сложившихся технологических традиций.
С появлением промышленности потребность в энергоносителях высокого качества и одновременно в их экономном расходовании резко возросла, поскольку в разумном обществе объем потребления и экономия энергии сущностно едины. Это вызвало к жизни новые научные разработки.
Еще в 18 веке, в 1745 году М.В. Ломоносов пишет диссертацию «О причине теплоты и холода», а через три года формулирует «всеобщий закон природы»- закон сохранения материи и движения.
Вслед за этим он же исследовал баланс действующих сил и расход энергии при «вольном» т.е. гравитационном, естественном «движении» вентиляционного воздуха «на шахтах и рудниках примеченном». Таким образом он оставил последователям научные основы естественной (наиболее энергоэкономичной) вентиляции, энергетика которой покоится на разностях температур, влажности и высот неразрывного потока воздуха.
Важный
вклад в топливо сбережение при отоплении зданий был сделан Н.А. Львовым,
обобщенный (в работе 1795 года «Русская пиростатика или употребление испытанных
уже печей и каминов»).
В первой половине 19 века массированные потребности в энергии и ее экономии
вызвали разработку теории тепловых машин (С. Карно), описание закона сохранения
энергии (Ю.Р. Майер, Дж. Джоуль, Г. Гельмгольц). Возникло ответвление науки – Термодинамика.
Были сформулированы три ее фундаментальных принципа («начала»), имеющие
непосредственное отношение к инженерным системам.
«Первое» - выражение закона сохранения энергии в виде балансов тепла и потоков энергоносителей.
«Второе» (Р. Клаузиус, У. Томсон) – учет необратимых потерь даже в идеализированных процессах передачи тепла (теплопотери в зданиях), Дж. Гиббс – метод термодинамических потенциалов (передача влаги в материалах и конструкциях).
И «третье» (В. Нернст) – свойство вырождения термодинамических функций и тепловой энергии тел в области температур вблизи абсолютного нуля.
Все это позволило точно вычислять как полезно потребляемую, так и безвозвратно теряемую доли тепловой энергии (за счет внешнего рассеивания и за счет необратимых внутренних потерь при любом теплообмене), т.н. эксергию и анергию.
Уже в конце 19 – начале 20 веков Д.И. Менделеев сделал научно обоснованные выводы о необходимости беречь ископаемое топливо, особенно газ, утверждая, что «сжигать газ это все равно, что топить печи ассигнациями». После Д.И. Менделеева, уже в наше время, как известно, нашими «ассигнациями» отапливается Запад.
А В.И. Вернадским были оценены экологические последствия тепловых и газовых выбросов в атмосферу, тепловых и химических выбросов в воды и грунт и найдены допустимые границы промышленной и добывающей деятельности человека, не вредящие самому его будущему, а строго регламентированные и находящиеся в согласии с природой.
И ни у кого из великих предков не было волюнтаристски составленных формул и коэффициентов.
Так что наше научно-техническое прошлое в части культуры потребления и сбережения энергии, так же, как и природы представляется отнюдь не темным царством.
И было бы хорошо, чтобы все современные инженеры, а также чиновники с их скорыми послушниками и помощниками, сбросили рекламную повязку с глаз, изучили его в силу своих возможностей, обратясь к объективной ситуации, и стремились бы из «зияющих высот» настоящего к новым научным «сияющим вершинам», по своему уровню хотя бы напоминающим уже отдаленные временем научные вершины прошлого.
Оптимизировать тепловые процессы в системах отопления и вентиляции, где главным критерием является минимум энергозатрат у нас обучены со студенческой скамьи все специалисты. Занимаются этим все и всегда. Поэтому разработанные и введенные нормы по строительной теплотехнике выглядят согласно народной поговорке: «Кто умеет, тот делает, кто не умеет – тот учит, как надо делать».
Энергетический кризис, имевший место на Западе в 70-х - начале 80-х годов до нас не дошел, мощная государственная программа по энергосбережению в СССР была выполнена: были разработаны все необходимые общепромышленные системы и оборудование для утилизации тепла вентиляционного выбросного воздуха, а в каждой отрасли промышленности, буквально для каждого цеха – конструктивные схемы и оборудование утилизации тепла, выделяемого технологическими аппаратами и печами. Были также разработаны теплонасосные системы, а также системы теплоснабжения с использованием солнечной, геотермальной и ветровой энергии.
К сожалению, все эти результаты оказались заброшенными. Отдельные исключения держатся на энтузиастах. Так вентиляционные теплоутилизаторы чаще всего не применяются в строительстве и реконструкции зданий, как в государственном, так и в частном секторах экономики. Даже в Москве.
Новый энергетический кризис, произошедший на Западе в последние 10 лет, уже ощущается и в России. Реакцией на него у нас стало, в частности, массовое и не всегда добровольное применение дорогостоящего зарубежного оборудования, автоматики, приборов учета тепловой энергии и теплоизоляционных материалов.
В подкрепление этого процесса были разработаны: измененный, по существу новый СНиП «Строительная теплотехника», Московские нормы «Энергосбережение в зданиях» и многие другие документы и публикации, неоднозначно воспринятые научной и инженерной общественностью. В первую очередь вследствие своей антирыночной, волюнтаристской сущности.
Развернувшаяся дискуссия, казалось, завершится большой и аргументированной публикацией, в которой в числе ряда положений показано, что традиционные, образованные тысячелетней эволюцией, выверенные климатом, геологией и географией естественные материалы для стен, в том числе массовые отечественные местные и наиболее экологичные дерево (рубленный дом) и кирпич из обожженной глины, поставлены измененным СНиП вне закона.
Но сей результат знаменателен тем, что он уже выходит за рамки только энергосбережения – это цивилизационное отторжение материалов и конструкций русского национального зодчества. Что для всякого здравомыслящего гражданина России странно. Результат этот, безусловно, требует более тщательного изучения задачи, во всей ее полноте. Следует либо отыскать доказательства и объяснения правомерности таковых нормативов, либо наоборот, их неправомерности и тогда найти аргументы, выстраивающие логику необходимости их отмены. Иначе и мы попадем под классическое определение А.С. Пушкина: «Дикость, подлость и невежество не уважают прошедшего, пресмыкаясь перед одним настоящим».
К чему относить понятие «экономия энергии в зданиях».
Какой бы жаркой ни была дискуссия вокруг энергосбережения в зданиях, она до сих пор ведётся в основном по вопросу принятия в заранее заданных значений (нигде не указывается кем и почему именно таких) минимальных термических сопротивлений ограждающих конструкций здания и тех или иных величин инфильтрации наружного воздуха, неизбежно участвующего в естественной вентиляции помещений. На чем и построен ряд нормативных документов.
Эти данные, полученные в результате расчетов теплопотерь в процессе проектирования по фрагментам ограждающих конструкций, суммируются и приводят к определению тепловой мощности систем отопления зданий.
Изначально предначертаны и возможные проценты «энергосбережения», которыми авторы норм активно оперируют и в литературе, и на уровнях управленческих.
Однако теряется факт, что сама система отопления – лишь одна из нескольких теплопотребляющих систем здания, к тому же потребляющих и электроэнергию.
Даже в простейшем примере здания – жилом доме городского типа существует, по крайней мере, еще система горячего водоснабжения с соизмеримым годовым потреблением тепла. Имеют место также затраты энергии на пищеприготовление (газ, электроэнергия ), электроосвещение, электропривод бытовой техники, электропитание информационной техники и др.
В гражданских и промышленных зданиях добавляются не менее крупные слагаемые затрат энергии на механическую вентиляцию и кондиционирование воздуха.
Поэтому оперировать процентами только на одно слагаемое, говоря, что это экономия энергии в здании в целом, есть подмена тезиса в дискуссии и некорректность математическая.
На самом деле проценты экономии энергии в зданиях от повышения их теплозащиты будут совсем другими.
Наглядным примером этой подмены является предписанная в МГСН форма энергетического паспорта здания. Она никак не обоснована, и не логична, если учесть весь комплекс энергопотребляющих систем. Форма паспорта построена на раздутом, многочисленном дроблении теплопотерь на мелкие составляющие (что является лишь предметом проектного расчета). Это создает избыток второстепенной информации и не дает аналитически полного представления об энергозатратах и энергосбережении в системах обеспечения воздушно-теплового микроклимата, системах светового микроклимата и санитарно-технических системах (горячее водоснабжение, пылеуборка, влажная уборка помещений).
Скороговоркой намеченные в энергопаспорте строчки по составляющим энергозатрат (кроме теплопотерь) также мало что дают, хотя бы по отсутствию связи с паспортами на вентиляционные системы, практикуемые у нас с начала 20 века.
Задача более полного представления энергопотребления зданием достаточно трудоемка и требует как постановочно-методических, так и серьезных научно-исследовательских работ, например в части интегрированного вычисления и отображения расходов разнородных энергоносителей, а также единого и энергоэкономичного управления физически разными энергопотоками.
Общетеоретическая постановка задачи и соответствующие формулы были представлены автором настоящих строк.
На этой основе, в качестве первого приближения, считаем возможным ограничиться только доступными данными по отоплению, механической вентиляции, кондиционированию воздуха и горячему водоснабжению, которые можно получить в процессе их реального проектирования и проектной оптимизации. При оценках годовых расходов энергии используем достаточно простой и освоенный аппарат расчета по ГСОП. В действительности интегральные значения величин потребления тепла описываются более сложными зависимостями и требуют более громоздких исходных данных и вычислительных процедур.
Список литературы