Реферат: Морфологический анализ цветных (спектрозональных) изображений
Пытьев Ю.П.
Московский государственный университет, Москва, Россия
1. Введение
Хорошо известно, что изображения одной и той же сцены, полученные при различных условиях освещения и(или) измененных[1] оптических свойствах объектов могут отличаться радикально. Это обстоятельство порождает значительные трудности в прикладных задачах анализа и интерпретации изображений реальных сцен, в которых решение должно не зависеть от условий регистрации изображений. Речь идет, например, о задачах выделения неизвестного объекта на фоне известной местности, известного объекта на произвольном фоне при неконтролируемых условиях освещения, о задаче совмещения изображенний одной и той же сцены, полученных в различных спектральных диапазонах и т.д.
Методы морфологического анализа, разработанные более десяти лет тому назад, [1-5], для решения перечисленных задач, были в основном ориентированы для применения к черно-белым изображениям[2] и оказались достаточно эффективными, [5-11].
Между тем, по меньшей мере два обстоятельства указывают на целесообразность разработки морфологических методов анализа цветных изображений. Во-первых, в задаче обнаружения и выделения объекта последний, как правило, прежде всего цветом отличается от фона. Во-вторых, описание формы изображения в терминах цвета позволит практически устранить эффект теней и влияние неопределенности в пространственном распределении интенсивности спектрально однородного освещения.
2. Цвет и яркость спектозонального изображения.
Рассмотрим
некоторые аспекты теории цвета так называемых многоспектральных
(спектрозональных, [13]) изображений, аналогичной классической колориметрии
[12]. Будем считать заданными n детекторов излучения со спектральными
чувствительностями j=1,2,...,n,
где l(0,¥) - длина волны излучения. Их выходные сигналы, отвечающие потоку
излучения со спектральной плотностью e(l)0, lÎ(0,¥), далее называемой излучением, образуют вектор
, w(×)=
. Определим суммарную
спектральную чувствительность детекторов
,
lÎ(0,¥), и соответствующий суммарный сигнал
назовем
яркостью излучения e(×). Вектор
назовем цветом излучения
e(×). Если
цвет e(×) и само
излучение назовем черным. Поскольку равенства
и
эквивалентны, равенство
имеет смысл и для черного
цвета, причем в этом случае
-
произвольный вектор, яркость оторого равна единице. Излучение e(×) назовем
белым и его цвет обозначим
если
отвечающие ему выходные сигналы всех детекторов одинаковы:
.
Векторы , и
,
, удобно считать элементами n-мерного
линейного пространства
. Векторы fe,
соответствующие различным излучениям e(×), содержатся в
конусе
.
Концы векторов
содержатся в
множестве
, где Ï -
гиперплоскость
.
Далее предполагается, что всякое
излучение , где E - выпуклый конус
излучений, содержащий вместе с любыми излучениями
все
их выпуклые комбинации (смеси)
Поэтому
векторы
в
образуют выпуклый конус
, а векторы
.
Если то и их аддитивная смесь
. Для нее
. (1)
Отсюда следует
Лемма 1. Яркость fe и цвет je любой аддитивной смеси e(×) излучений e1(×),...,em(×), m=1,2,... определяются яркостями и цветами слагаемых.
Подчеркнем,
что равенство , означающее
факт совпадения яркости и цвета излучений e(×) и
, как правило, содержит
сравнительно небольшую информацию об их относительном спектральном составе.
Однако замена e(×) на
в любой
аддитивной смеси излучений не изменит ни цвета, ни яркости последней.
Далее
предполагается, что вектор w(×) таков, что в E можно указать базовые
излучения , для которых векторы
, j=1,...,n,
линейно независимы. Поскольку цвет таких излучений непременно отличен от
черного, их яркости будем считать единичными,
, j=1,...,n. В
таком случае излучение
характеризуется
лишь цветом
, j=1,...,n.
Для всякого излучения e(×) можно записать разложение
, (1*)
в котором -
координаты
в базисе
,
или, в виде выходных
сигналов детекторов излучения, - , где
,
, - выходной сигнал i-го
детектора, отвечающий j-ому излучению ej(×), i, j=1,...,n. Матрица
- стохастическая, поскольку
ее матричные элементы как яркости базовых излучений
неотрицательны
и
, j=1,...,n.
При этом яркость
и вектор цвета
,
, j=1,...,n,
(конец которого лежит в Ï) определяются координатами aj и цветами излучений
, j=1,...,n,
и не зависят непосредственно от спектрального состава излучения e(×).
В ряде
случаев белое излучение естественно определять исходя из базовых излучений, а
не из выходных сигналов детекторов, считая белым всякое излучение, которому в
(1*) отвечают равные координаты: .
Заметим,
что слагаемые в (1*), у которых aj<0,[3]
физически интерпретируются как соответствующие излучениям,
"помещенным" в левую часть равенства (1*) с коэффициентами -aj>0: . В такой
форме равенство (1*) представляет “баланс излучений”.
Определим
в скалярное произведение
и векторы
, биортогонально сопряженные
с
:
, i,j=1,...,n.
Лемма
2. В разложении (1*) , j=1,...,n,
. Яркость
, где
, причем вектор y ортогонален гиперплоскости Ï, так как
, i,j=1,...,n.
Что касается скалярного проиведения , то его естественно
определять так, чтобы выходные сигналы детекторов
были координатами fe
в некотором ортонормированном базисе
.
В этом базисе конус
. Заметим, что для
любых векторов
и, тем более, для
,
[4].
Пусть Х - поле зрения,
например, ограниченная область на плоскости R2, или на сетке ,
спектральная
чувствительность j-го детектора излучения, расположенного в точке
;
- излучение, попадающее в
точку
. Изображением назовем
векторнозначную функцию
(2**)
Точнее, пусть Х - поле зрения, (Х,
С, m) - измеримое пространство Х с мерой m, C - s-алгебра
подмножеств X. Цветное (спектрозональное) изображение определим равенством
, (2)
в котором почти для всех ,
, - m-измеримые
функции на поле зрения X, такие, что
.
Цветные изображения образуют подкласс функций лебеговского класса
функций
. Класс цветных изображений
обозначим LE,n.
Впрочем,
для упрощения терминологии далее любой элемент называется
цветным изображением, а условие
(2*)
условием физичности изображений f(×).
Если f(×) - цветное изображение (2), то ,
как нетрудно проверить, - черно-белое изображение [2], т.е.
,
. Изображение
, назовем черно-белым
вариантом цветного изображения f(×), а цветное изображение
, f(x)0, xÎX - цветом изображения f(×). В точках
множества Â={xÎX: f(x)=0} черного цвета j(x),
xÎÂ, -
произвольные векторы из
,
удовлетворяющие условию: яркость j(x)=1. Черно-белым вариантом
цветного изображения f(×) будем также
называть цветное изображение b(×), имеющее в каждой
точке Х ту же яркость, что и f(×), b(x)=f(x),
xÎX, и белый цвет, b(x)=b(x)/b(x)=b, xÎX.
3. Форма цветного изображения.
Понятие формы изображения
призвано охарактеризовать форму изображенных объектов в терминах характерности
изображений, инвариантных относительно определенного класса преобразований
изображения, моделирующих меняющиеся условия его регистрации. Например, довольно
часто может меняться освещение сцены, в частности, при практически неизменном
спектральном составе может радикально изменяться распределение интенсивности
освещения сцены. Такие изменения освещения в формуле (2**) выражаются
преобразованием , в котором
множитель k(x) модулирует яркость изображения
в каждой точке
при неизменном распределении
цвета. При этом в каждой точке
у вектора
f(x) может измениться длина, но направление останется
неизменным.
Нередко изменение
распределения интенсивности освещения сопровождается значительным изменением и
его спектрального состава, но - пространственно однородным, одним и тем же в
пределах всей изображаемой сцены. Поскольку между спектром излучения e и
цветом j нет взаимно
однозначного соответствия, модель сопутствующего преобразования изображения f(x)
в терминах преобразования его цвета j(×). Для этого определим отображение A(×):,
ставящее в соответствие каждому вектору цвета
подмножество
поля зрения
в точках которого
изображение
, имеет постоянный цвет
.
Пусть при рассматриваемом
изменении освещения и, соответственно,
;
предлагаемая модель преобразования изображения состоит в том, что цвет
преобразованного
изображения должен быть также постоянным на каждом множестве A(j), хотя, вообще
говоря, - другим, отличным от j.
Характекрным в данном случае является тот факт, что равенство
влечет
. Если
- самое детальное
изображение сцены, то, вообще говоря, на различных множествах A(j¢) и A(j) цвет изображения
может
оказаться одинаковым[5].
Как правило, следует учитывать непостоянство оптических характеристик сцены и т.д. Во всех случаях форма изображения должна быть инвариантна относительно преобразования из выделенного класса и, более того, должна определять изображение с точностью до произвольного преобразования из этого класса.
Для определения понятия
формы цветного изображения f(×) на удобно
ввести частичный порядок p , т.е.
бинарное отношение, удовлетворяющее условиям: 1)
,
2)
,
, то
,
; отношение p должно быть согласованным с
определением цветного изображения (с условием физичности), а именно,
, если
. Отношение p интерпретируется аналогично тому, как
это принято в черно-белой морфологии[2], а именно,
означает,
что изображения f(×) и g(×) сравнимы по форме, причем форма
g(×) не сложнее, чем
форма f(×). Если
и
, то f(×) и g(×) назовем совпадающими по
форме (изоморфными), f(×)
~ g(×). Например, если f(×) и g(×) - изображения одной и той же
сцены, то g(×),
грубо говоря, характеризует форму изображенных объектов не точнее (подробнее,
детальнее), чем f (×),
если
.
В рассматриваемом выше
примере преобразования изображений , если между множествами A(j),
и A¢(j¢),
существует
взаимно-однозначное соответствие, т.е., если существует функция
, такая, что A¢(j¢(j))= A(j),
, причем
, если
. В этом случае равенства
и
эквивалентны,
и
изоморфны и одинаково
детально характеризуют сцену, хотя и в разных цветах.
Если же не взаимно однозначно, то A¢(j¢)=U
A(j) и
. В этом случае
равенство
влечет
(но не эквивалентно)
,
передает, вообще говоря, не
все детали сцены, представленные в
.
Пусть, скажем, g(×) - черно-белый вариант f(×), т.е. g(x)=f(x) и g(x)/g(x)=b, xÎX.
Если преобразование -
следствие изменившихся условий регистрации изображения, то, естественно,
. Аналогично, если f(×), g(×) -
изображения одной и той же сцены, но в g(×),
вследствие неисправности выходные сигналы некоторых датчиков равны нулю,
то
. Пусть F - некоторая полугруппа
преобразований
, тогда для любого
преобразования FÎF
,
поскольку, если некоторые детали формы объекта не отражены в изображении f(×), то они, тем более, не
будут отражены в g(×).
Формой изображения f(×) назовем множество
изображений
, форма которых не сложнее,
чем форма f`(×),
и их пределов в
(черта
символизирует замыкание в
). Формой
изображения f(×) в
широком смысле назовем минимальное линейное подпространство
, содержащее
. Если считать, что
для любого изображения
, то это будет означать,
что отношение p непрерывно
относительно сходимости в
в том
смысле, что
.
Рассмотрим теперь более подробно понятие формы для некоторых характерных классов изображений и их преобразований.
4. Форма кусочно-постоянного (мозаичного) цветного изображения.
Во многих практически
важных задачах форма объекта на изображении может быть охарактеризована
специальной структурой излучения, достигающего поле зрения X в виде здесь
- индикаторные функции
непересекающихся подмножеств Аi, i=1,…...,N, положительной
меры поля зрения Х, на каждом из которых функции
,
, j=1,...,n, i=1,...,N,
непрерывны. Поскольку согласно лемме 2
, (3)
то цветное изображение fe(×), такого объекта
характеризует его форму непрерывным распределением яркости и цвета на
каждом подмножестве Ai, i=1,...,N. Для
изображения ,
где
, также характерно
напрерывное распределение яркости и цвета на каждом Ai, если
, - непрерывные функции.
Если, в частности, цвет и яркость постоянны на Ai,
i=1,...,N, то это верно и для всякого изображения
, если
не зависит явно от
. Для такого
изображения примем следующее представление:
, (4)
его черно-белый вариант
(4*)
на каждом Ai имеет
постоянную яркость , и цвет
изображения (4)
(4**)
не меняется на Ai
и равен , i=1,...,N.
Поскольку для реальных
изображений должно быть выполнено условие физичности (2*), , то форму изображения
(4), имеющего на различных множествах Аi имеет несовпадающие
яркости
и различные цвета
, определим как выпуклый
замкнутый в
конус:
. (4***)
v(a), очевидно, содержится в n×N мерном линейном подпространстве
, (4****)
которое назовем формой a(×) в широком смысле.
Форму в широком смысле
любого изображения a(×),
у которого не обязательно различны яркости и цвета на различных
подмножествах Ai ,i=1,...,N, определим как линейное
подпространство , натянутое не вектор-функции Fa(×),FÎF,
где F - класс преобразований
,
определенных как преобразования векторов a(x)®Fa(x) во
всех точках xÎX;
здесь F - любое преобразование
. Тот факт, что F означает как преобразование
, так и преобразование
, не должен вызывать
недоразумения.
Изображения из конуса(4***) имеют форму, которая не сложнее, чем форма a(×) (4), поскольку некоторые из них могут иметь одно и то же значение яркости или(и) цвета на различных множествах Аi, i=1,…………..,N. Также множества оказываются, по существу, объединенными в одно, что и приводит к упрощению формы изображения, поскольку оно отражает меньше деталей формы изображенного объекта, чем изображение (4). Это замечание касается и L(a(×)), если речь идет о форме в широком смысле.
Лемма 3. Пусть {Аi}
- измеримое разбиение X: .
Изображение (3) имеет на каждом подмножестве Ai :
- постоянную яркость
и цвет
, если и только если
выполняется равенство (4);
- постоянный цвет , если и только если в
(3)
;
- постоянную яркость
fi , i=1,...,N, если и только если в (3) не зависит от
, i=1,…...,N.
Доказательство . На множестве Ai яркость и цвет изображения (3) равны соответственно[6]
,
, i=1,.…..,N.
Если выполнено равенство (4), то и
от
не зависят. Наоборот, если
и
, то и
, т.е. выполняется (4).
Если , то
цвет
не зависит от
. Наоборот, пусть
не зависит от
. В силу линейной
независимости
координаты j(i)(x) не
зависят от
, т.е.
и, следовательно,
где
- яркость на A i
и
. Последнее утверждение
очевидно n
Цвет изображения определяется как электродинамическими свойствами поверхности изображенного объекта, так и спектральным составом облучающего электромагнитного излучения в том диапазоне, который используется для регистрации изображения. Речь идет о спектральном составе излучения, покидающего поверхность объекта и содержащего как рассеянное так и собственное излучения объекта. Поскольку спектральный состав падающего излучения, как правило, пространственно однороден, можно считать, что цвет изображения несет информацию о свойствах поверхности объекта, о ее форме, а яркость в значительной степени зависит и от условий “освещения”. Поэтому на практике в задачах морфологического анализа цветных изображений сцен важное значение имеет понятие формы изображения, имеющего постоянный цвет и произвольное распределение яркости в пределах заданных подмножеств Ai , i=1,...,N, поля зрения X.
Итак, пусть в согласии с леммой 3
, (5)
где, - индикаторная
функция Ai,
, функция
gi(×)
задает распределение яркости
(6)
в пределах Ai при постоянном цвете
,
i=1,...,N, (7)
причем для изображения (5) цвета j(i), i=1,.…..,N,
считаются попарно различными, а функции g(i), i=1,.…..,N, -
удовлетворяющими условиям i=1,.…..,N.
Нетрудно заметить, что в выражениях (5),(6) и (7) без
потери общности можно принять условие нормировки ,
позволяющее упростить выражения (6) и (7) для распределений яркости и цвета. С
учетом нормировки распределение яркости на Ai задается
функцией
а цвет на Ai
равен
(7*)
Форму изображения (5) определим как класс всех изображений
(8)
,
каждое из которых, как и изображение (5), имеет
постоянный цвет в пределах каждого Ai, i=1,...,N. Форма таких
изображений не сложнее, чем форма f(×) (5), поскольку в
изображении на некоторых различных
подмножествах Ai, i=1,...,N, могут совпадать значения цвета,
которые непременрно различны в изображении f(×) (5). Совпадение
цвета
на различных подмножествах Ai,
i=1,...,N ведет к упрощению формы изображения
по
сравнению с формой f(×) (5). Все изображения
, имеющие различный цвет на
различных Ai, i=1,...,N, считаются изоморфными f(×) (и между собой), форма
остальных не сложнее, чем форма f(×). Если
, то, очевидно,
.
Если в (8) яркость , то цвет
на Ai
считается произвольным (постоянным), если же
в
точках некоторого подмножества
, то
цвет
на Ai
считается равным цвету
на
, i=1,...,N.
Цвет изображения (8) может не совпадать с цветом (5).
Если же по условию задачи все изображения ,
форма которых не сложнее, чем форма
, должны
иметь на Ai, i=1,...,N, тот же цвет, что и у
то следует потребовать,
чтобы
, в то время, как яркости
остаются
произвольными (если
, то цвет
на Ai
определяется равным цвету f(×) на Ai,
i=1,...,N).
Нетрудно определить форму любого, не обязательно
мозаичного, изображения f(×) в том случае, когда допустимы произвольные
изменения яркости при неизменном
цвете j(x) в каждой точке
. Множество, содержащее все
такие изображения
(9)
назовем формой в широком смысле изображения , у которого f(x)¹0, m-почти
для всех
, [ср. 2].
является линейным
подпространством
, содержащем любую
форму
, (10)
в которой включение определяет
допустимые значения яркости. В частности, если
означает,
что яркость неотрицательна:
, то
- выпуклый замкнутый конус
в
, принадлежащий
.
Более удобное описание формы изображения может быть получено на основе методов аппроксимации цветных изображений, в которых форма определяется как оператор наилучшего приближения. В следующем параграфе дано представление формы изображения в виде оператора наилучшего приближения.
5. Задачи аппроксимации цветных изображений. Форма как оператор наилучшего приближения.
Рассмотрим вначале задачи
приближения кусочно-постоянными (мозаичными) изображениями. Решение этих задач
позволит построить форму изображения в том
случае, когда считается, что
для
любого преобразования
, действующего на
изображение
как на вектор
в каждой точке
и оставляющего
элементом
, т.е. изображением. Форма в
широком смысле
определяется как
оператор
наилучшего приближения
изображения
изображениями
где - класс
преобразований
, такой, что
. Иначе можно считать, что
(10*)
а -
оператор наилучшего приближения элементами множества
, форма которых не сложнее,
чем форма
. Характеристическим для
является тот факт, что,
если f(x)=f(y), то для любого
.
5.1. Приближение цветного изображения изображениями, цвет и
яркость которых постоянны на подмножествах разбиения поля зрения X.
Задано разбиение , требуется
определить яркость и цвет наилучшего приближения на каждом
. Рассмотрим задачу наилучшего приближения в
цветного изображения f(×) (2) изображениями (4), в которых считается заданным разбиение
поля зрения X и
требуется определить
из условия
(11)
Теорема
1. Пусть .
Тогда решение задачи (11) имеет вид
, i=1,...,N, j=1,...,n, (12)
и искомое изображение (4) задается равенством
. (13)
Оператор является ортогональным
проектором на линейное подпространство (4****)
изображений (4),
яркости и цвета которых не изменяются в пределах
каждого Ai , i=1,...,N.
Черно-белый
вариант (4*) цветного
изображения
(4) является
наилучшей в
аппроксимацией черно-белого варианта
цветного
изображения f(×) (2), если цветное изображение
(4) является наилучшей в
аппроксимацией цветного
изображения f(×) (2). Оператор
, является
ортогональным проектором на линейное подпространство черно-белых изображений,
яркость которых постоянна в пределах каждого
.
В точках множества цвет
(4**) наилучшей
аппроксимации
(4) цветного
изображения f(×) (2) является цветом
аддитивной смеси составляющих f(×) излучений,
которые попадают на
.
Доказательство. Равенства (12) - условия минимума положительно определенной
квадратичной формы (11), П - ортогональный проектор, поскольку в задаче
(11) наилучшая аппроксимация - ортогональная проекция f(×) на . Второе утверждение следует
из равенства
,
вытекающего из (13). Последнее утверждение следует из
равенств
,i=1,...,N
вытекающих из (12) и равенства (1), в котором индекс k следует заменить
на xÎX. ■
Замечание
1. Для любого измеримого разбиения ортогональные проекторы
и
определяют
соответственно форму в широком смысле цветного изображения (4), цвет и яркость которого, постоянные в пределах каждого
, различны для различных
, ибо
, и форму в широком
смысле черно-белого изображения, яркость которого постоянна на
каждом
и различна для разных
,[2].
Если
учесть, условие физичности (2*), то формой цветного изображения следует считать
проектор на
выпуклый замкнутый конус
(4***)
Аналогично формой
черно-белого изображения следует считать проектор на
выпуклый замкнутый конус изображений (4*), таких, что
[2]. Дело в том, что оператор
определяет
форму
изображения (4), а именно
-
множество собственных функций оператора
. Поскольку
f(×) -
наилучшее приближение изображения
изображениями из
, для любого изображения
из
и только для таких
-
.
Поэтому проектор
можно
отождествить с формой изображения (4).
Аналогично для черно-белого изображения a(×)
,[7]
[2]. И проектор
можно
отождествить с формой изображения (4*), как это сделано в работах [2,3].
Примечания.
Формы в
широком смысле не определяются связью задач наилучшего приближения элементами и
, которая известна как
транзитивность проецирования. Именно, если
оператор
наилучшего в
приближения злементами
выпуклого замкнутого (в
и в
) конуса
, то
. Иначе говоря, для
определения наилучшего в
приближения
элементами
можно вначале найти
ортогональную проекцию
изображения
на
, а затем
спроецировать в
на
. При этом конечномерный
проектор
для каждого конкретного
конуса
может быть реализован
методом динамического программирования, а для многих задач морфологического
анализа изображений достаточным оказывается использование лишь проектора П
.
Форма
в широком смысле (4***) изображения (4) полностью определяется измеримым разложением
, последнее, в свою очередь
определяется изображением
,
если векторы попарно
различны. Если при этом
, то
форма в широком смысле
может быть
определена и как оператор П ортогонального проецирования на
, определенный равенством
(13).
Посмотрим, каким образом
воспользоваться этими фактами при построении формы в широком смысле как
оператора ортогонального проецирования на линейное подпространство (10*) для произвольного
изображения
. Пусть
- множество значений
и
- измеримое разбиение X , порожденное
, в котором
- подмножество X , в пределах
которого изображение
имеет постоянные
яркость и цвет, определяемые вектором
,
если
.
Однако для найденного разбиения
условие , вообще говоря, невыполнимо
и, следовательно, теорема 1 не позволяет построить ортогональный проектор П
на
. Покажем, что П
можно получить как предел последовательности конечномерных ортогональных
проекторов. Заметим вначале, что любое изображение
можно
представить в виде предела (в
) должным
образом организованной последовательности мозаичных изображений
(*)
где -
индикатор множества
,
принадлежащего измеримому разбиению
В (*) можно, например, использовать так называемую исчерпывающую последовательность разбиений [], удовлетворяющую следующим условиям
- - C - измеримо,
;
- N+1-oe разбиение является продолжением N-го,
т.е. для любого , найдется i=i(j),
, такое, что
;
- минимальная s-алгебра, содержащая все , совпадает с C.
Лемма (*). Пусть - исчерпывающая
последователь-ность разбиений X и
- то
множество из
, которое содержит
. Тогда для любой C-измеримой
функции
и m-почти для всех
[
]. n
Воспользуемся этим результатом для
построения формы в широком смысле П произвольного изображения . Пусть
- минимальная s-алгебра,
относительно которой измеримо
, т.е.
пусть
, где
- прообраз борелевского
множества
, B - s-алгебра
борелевских множеств
. Заменим в
условиях, определяющих исчерпывающую последовательность разбиений, C на
и выберем эту, зависящую от
, исчерпывающую
последовательность (
- измеримых) разбиений
в лемме (*).
Теорема (*). Пусть ,
- исчерпывающая
последовательность разбиений X, причем
- минимальная
s-алгебра, содержащая все
и
П(N) - ортогональный проектор
,
определенный равенством
,
Тогда
1) для любого -измеримого
изображения
и почти для всех
,
,
2) для любого изображения при
(в
), где П - ортогональный
проектор на
.
Доказательство. Первое утверждение
непосредственно следует из леммы (*) и определения .
Для доказательства второго утверждения заметим, что, так как A(N+1)
- продолжение разбиения A(N), N=1,2,..., то
последовательность проекторов П(N), N=1,2,..., монотонно
неубывает:
и потому сходится
(поточечно) к некоторому ортогональному проектору П. Так как
- множество всех
-измеримых изображений и их
пределов (в
), а в силу
леммы (*) для любого
-измеримого
изображения
, то для
любого изображения
и для любого
,
ибо
-измеримо, N=1,2,...
n
Вопрос о том, каким образом может быть построена исчерпывающая последовательность разбиений, обсуждается в следующем пункте.
Заданы
векторы f1,...,fq, требуется определить разбиение , на множествах которого
наилучшее приближение принимает соответственно значенния f1,...,fq.
Рассмотрим задачу приближения цветного
изображения f(×), в которой задано не разбиение
поля зрения X, а
векторы
в
, и требуется построить
измеримое разбиение
поля зрения,
такое, что цветное изображение
-
наилучшая в
аппроксимация f(×). Так как
, (14*)
то в Ai
следует отнести лишь те точки , для
которых
,
=1,2,...,q, или, что
то же самое,
=1,2,...,q. Те точки,
которые согласно этому принципу могут быть отнесены к нескольким множествам,
должны быть отнесены к одному из них по произволу. Учитывая это, условимся
считать, что запись
, (14)
означает, что
множества (14) не пересекаются и .
Чтобы
сформулировать этот результат в терминах морфологического анализа, рассмотрим
разбиение , в котором
(15)
и звездочка указывает
на договоренность, принятую в (14). Определим оператор F,
действующий из в
по формуле
,
, i=1,...,q.
Очевидно, F всегда можно согласовать с (14) так, чтобы включения
и
, i=1,...,q, можно было
считать эквивалентными. [8]
Теорема
2. Пусть - заданные векторы Rn. Решение задачи
наилучшего в приближения изображения f(×) изображениями
имеет вид
, где
- индикаторная функция
множества
. Множество
определено равенством (15).
Нелинейный оператор
, как всякий
оператор наилучшего приближения удовлетворяет условию F2=F, т.е.
является пректором.
Замечание
2. Если данные задачи доступны лишь в
черно-белом варианте, то есть заданы числа ,
i=1,...,q, которые можно считать упорядоченными согласно условию
, то, как показано в [3],
искомое разбиение X состоит из множеств
где , и имеет мало общего с
разбиением (14).
Замечание
3. Выберем векторы fi,
i=1,..,q единичной длины: ,
i=1,...,q. Тогда
. (16)
Множества (16) являются конусами в Rn , ограниченными гиперплоскостями, проходящими через начало
координат. Отсюда следует, что соответствующее приближение изображения f(×)
инвариантно относительно произвольного преобразования последнего, не
изменяющего его цвет (например
), в
частности, относительно образования теней на f(×).
Замечание 4. Для любого
заданного набора попарно различных векторов оператор
F, приведенный в теореме 2, определяет форму изображения,
принимающего значения
соответственно на
измеримых множествах
(любого) разбиения
X. Всякое такое изображение является
неподвижной (в
) точкой F:
, если
, все они изоморфны между
собой. Если некоторые множества из
-
пустые, или нулевой меры, соответствующие изображения имеют более простую
форму.
Иначе говоря, в данном случае формой
изображения является множество всех
изображений, принимающих заданные значения
на
множествах положительной меры
любого
разбиения X, и их пределов в
.
Теоремы 1 и 2 позволяют
записать необходимые и достаточные условия наилучшего приближения изображения f(×) изображениями
, в котором требуется
определить как векторы
,
так и множества
так,
чтобы
.
Следствие 1.
Пусть Di ,i=1,...,N, - подмножества Rn (15), П - ортогональный проектор (13), , где
. Тогда
необходимые и достаточные условия
суть следующие:
, где
,
.
Следующая рекуррентная процедура, полезная для
уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет
решать названную задачу. Пусть - исходные векторы в задаче (14*),
- соответствующее
оптимальное разбиение (14), F(1)- оператор наилучшего
приближения и
- невязка.
Воспользовавшись теоремой 1, определим для найденного разбиения
оптимальные векторы
. Согласно выражению
(13)
, и соответствующий
оператор наилучшего приближения П(1) (13) обеспечит не менее
точное приближение f(×), чем F(1):
.
Выберем теперь в теореме 2
,
определим соответствующее оптимальное разбиение
и
построим оператор наилучшего приближения F(2). Тогда
. На следующем шаге по
разбиению
строим
и оператор П(3)
и т.д.
В заключение этого пункта вернемся к
вопросу о построении исчерпывающего -измеримого
разбиения X, отвечающего заданной функции
.
Выберем произвольно попарно различные векторы
из
f(X) и построим по формуле (15) разбиение Rn
. Для каждого q=1,2,...
образуем разбиение E(N(q)), множества
, j=1,...,N(q),
которого образованы всеми попарно различными пересечениями
множеств из
. Последовательность
соответствующих разбиений X
, i=1,...,N(q), q=1,2...
-измеримы и
является продолжением
5.2. Приближение
изображениями, цвет которых постоянен на подмножествах разбиения поля
зрения X.
Задано разбиение , требуется определить цвет
и распределение яркостей наилучшего приближения на каждом Ai,i=1,...,N.
Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.
Запишем изображение (5) в виде
(17)
где .
Пусть A1,...,AN
- заданное разбиение X, -
индикаторная функция Ai, i=1,...,N. Рассмотрим задачу
наилучшего в
приближения изображения
изображениями (17), не
требуя, чтобы
(18)
Речь идет о задаче аппроксимации
произвольного изображения изображениями,
у которых яркость может быть произвольной функцией из
, в то время, как цвет
должен сохранять постоянное значение на каждом из заданных подмножеств A1,...,AN
поля
зрения X, (см. Лемму 3).
Так как
то минимум S (19) по достигается при
, (20)
и равен
(21)
Задача (18) тем самым сведена к задаче
. (22)
В связи с последней рассмотрим
самосопряженный неотрицательно определенный оператор
. (23)
Максимум (неотрицательной)
квадратичной формы на сфере
в Rn, как известно, (см.,например, [11]) достигается на собственном
векторе yi оператора Фi,
отвечающем максимальному собственному значению
>0,
,
и равен ,
т.е.
. Следовательно, максимум в
(22) равен
и достигается, например, при
Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем[9]
m(Ai)>0, i=1,...,N. Решением задачи (18) наилучшего
приближения изображения изображениями
g(×)
(17) является
изображение
(24)
Операторы ,i=1,...,N, и
- нелинейные (зависящие от f(×)
) проекторы: Пi
проецирует в Rn векторы
на линейное подпространство
,
натянутое на собственный вектор
оператора
Фi (23), отвечающий наибольшему собственному
значению ri,
; (25)
П проецирует в изображение
на минимальное линейное
подпространство
, содержащее все
изображения
Невязка наилучшего приближения
(19*).
Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi неотрицательны и среди них ri - наибольшее.
Для доказательства свойств операторов Пi, i=1,...,N, и П введем обозначения, указывающие на зависимость от f(×):
(26*)
Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.
Пусть fi
- cсобственный вектор Фi , отвечающий
максимальному собственному значению ri. Чтобы определить следует
решить задачу на собственные значения для оператора
:
.
Поскольку rank=1,
имеет единственное
положительное собственное значение, которое, как нетрудно проверить, равно ri, и ему соответствует единственный собственный вектор fi.
Поэтому
.
Отсюда, в свою очередь, следует равенство (26*)
для n
Лемма 4. Для любого
изображения решение (24)
задачи (18) наилучшего приближения единственно и является элементом
.
Доказательство. Достаточно доказать,
что единственный (с точностью до положительного множителя) собственный вектор fi
оператора (23), отвечающий максимальному собственному значению ri,
можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:
,
составляющие содержание леммы. Действительно,
если то согласно (23)
, поскольку включение
означает, что
; отсюда и из (25) получим,
что
,i=1,...,N, а поэтому
и в (24)
.
Убедимся в неотрицательности . В ортонормированном базисе
e1,...,en, в котором
,
выходной сигнал i-го детектора в точке
(см.
замечание 1) задача на собственные значения (23*) имеет вид
, p=1,...,n,
где ,
.
Так как матрица симметрическая и
неотрицательно определенная (
) она
имеет n неотрицательных собственных значений
,
которым соответствуют n ортонормированных собственных векторов
, а поскольку матричные
элементы
, то согласно теореме
Фробенуса-Перрона максимальное собственное значение
-
алгебраически простое (некратное), а соответствующий собственный вектор можно
выбирать неотрицательным:
. Следовательно, вектор fi определен
с точностью до положительного множителя
,
. n
Замечание 4.
Если , т.е. если
аппроксимируемое изображение на множествах того же разбиения
имеет постоянный цвет, то в
теореме 3
,
.
Наоборот, если ,
то
, т.е.
определяется выражением
(17), в котором
.
Итак, пусть в изображении g(×) (17) все векторы
f1,.…..,fN попарно не коллинеарны, тюею цвета
всех подмножеств A1,...,AN попарно различны. Тогда форма в широком смысле изображения (17) есть
множество решений уравнения
,
, (27)
где , fi - собственный
вектор оператора Фi:
,
отвечающий максимальному собственному значению ri,
i=1,...,N . В данном случае
, если и только если
выполнено равенство (27).
Оператор П (24), дающий решение задачи
наилучшего приближения ,
естественно отождествить с формой в широком смысле изображения
(17).
Заданы векторы цвета j1,..., jq, требуется определить разбиение A1,...,
Aq, на множествах которого наилучшее приближение имеет
соответственно цвета j1,..., jq и оптимальные распределения яркостей [10].
Речь идет о следующей задаче наилучшего в приближения
изображения
. (28)
Рассмотрим вначале задачу (28) не
требуя, чтобы . Так как для
любого измеримого
, (29)
и достигается на
, (30)
то, как нетрудно убедиться,
, (31)
где звездочка * означает то же самое, что и в
равенстве (14): точки xÎX, в которых
выполняется равенство могут
быть произвольно отнесены к одному из множеств Ai или Aj.
Пусть
- разбиение
, в котором
(32)
а F: Rn-> Rn оператор, определенный условием
(33)
Тогда решение задачи (28) можно представить в виде
, (34)
где -
индикаторная функция множества Ai (31), i=1,...,q и F
-оператор, действующий в
по
формуле (34) (см. сноску 4 на стр. 13).
Нетрудно убедиться, что задача на
минимум (29) с условием физичности
(35)
имеет решение
(36)
Соответственно решение задачи (28) с условием физичности имеет вид
, (37)
где -
индикаторная функция множества
, (38)
В ряде случаев для построения (34) полезно определить оператор F+: Rn-> Rn, действующий согласно формуле
(39)
где
, так что
,i=1,...q. (40)
Подытожим сказанное.
Теорема 4. Решение задачи (28)
наилучшего в приближения
изображения
изображениями
на искомых множествах A1,...,Aq разбиения X заданные цветами
j1,..., jq соответственно, дается равенством (34), искомое разбиение A1,...,Aq
определено в (31). Требование физичности
наилучшего приближения приводит к решению (37) и определяет искомое
разбиение формулами (38). Решение (34) инвариантно относительно
любого, а (37) - относительно любого, сохраняющего физичность,
преобразования, неизменяющего его цвет.
Формой в широком смысле
изображения, имеющего заданный набор цветов j1,..., jq на некоторых множествах
положительной меры A1,...,Aq разбиение поля зрения можно назвать оператор (34),
формой такого изображения является оператор F+ (37). Всякое
такое изображение g(×), удовлетворяющее условиям физичности (неотрицательности
яркостей), удовлетворяет уравнению F+g(×)=g(×), те
из них, у которых m(Ai)>0, i=1,...,q, изоморфны, остальные
имеют более простую форму. n
В заключение этого раздела вернемся
к понятию формы изображения, заданного с точностью до произвольного,
удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме
изображения , заданного распределением
цвета
, при произвольном
(физичном) распределении яркости, например,
.
Для определения формы
рассмотрим задачу
наилучшего в
приближения изображения
такими изображениями
, (41)
Теорема 5. Решение задачи (41) дается
равенством
, (42)
в котором , где
. Невязка приближения
, (43)
( !) n
Определение. Формой
изображения, заданного распределением цвета ,
назовем выпуклый, замкнутый конус изображений
или - проектор на
.
Всякое изображение g(×),
распределение цвета которого есть j(×) и только такое изображение содержится
в и является неподвижной
точкой оператора
:
g(×) = g(×). (#)
Поскольку на самом деле детали
сцены, передаваемые распределением цвета j(×), не
представлены на изображении f(×) = f(×)j(×) в той
области поля зрения, в которой яркость f(x)=0, xÎX, будем считать, что - форма любого изображения f(x)
= f(x)j(x), f(x)>0, xÎX(modm), все такие
изображения изоморфны, а форма всякого изображения g(×),
удовлетворяющего уравнению (#), не сложнее, чем форма f(×).
Замечание 5. Пусть j1,..., jN - исходный набор цветов,
, A1,...,AN
- соответствующее оптимальное разбиение X, найденное в теореие 4 и
, (34*)
- наилучшее приближение f(×). Тогда в равенстве (24)
, (24*)
если A1,...,AN -
исходное разбиение X в теореме 3. Наоборот, если A1,...,AN -
заданное в теореме 3 разбиение X
и f1,...,fN -
собственные векторы операторов Ф1,...,ФN (23)
соответственно, отвечающие максимальным собственным значениям, то f1,...,fN
и будет выполнено равенство
(24), если в (34*) определить ji как цвет fi в (24), i=1,...,N.
Проверка этого замечания не представляет затруднений.
В. Случай, когда допускаются небольшие изменения цвета в пределах каждого Ai, i=1,...,N.
Разумеется, условие постоянства
цвета на множествах Ai, i=1,...,N, на практике может выполняться лишь с определенной точностью.
Последнюю можно повысить как путем перехода к более мелкому разбиению , так и допустив некоторые изменения цвета в пределах каждого Ai, i=1,...,N, например, выбрав вместо
(17) класс изображений
(17*)
в котором в
(3).
Поскольку в задаче наилучшего
приближения f(×)
изображениями этого класса предстоит найти ,
векторы
при любом i=1,...,N,
можно считать ортогональными, определив
, (*)
из условия минимума невязки по . После этого для каждого i=1,...,N
векторы
должны быть определены из
условия
(**)
при дополнительном условии ортогональности
. Решение этой задачи дается в следующей лемме
Лемма 5. Пусть ортогональные собственные
векторы оператора Фi (23), упорядоченные по убыванию
собственных значений:
.
Тогда решение задачи (**) дается равенствами .
Доказательство. Заметим, что,
поскольку Фi - самосопряженный неотрицательно
определенный оператор, его собственные значения неотрицательны, а его
собственные векторы всегда можно выбрать так, чтобы они образовали
ортогональный базис в Rn. Пусть Pi
- ортогонально проецирует в Rn на линейную оболочку собственных векторов
и
[Pi Фi Pi]
- сужение оператора Pi Фi Pi на . Тогда левая часть (*)
равна следу оператора [Pi Фi Pi]
, где
- j-ое
собственное значение оператора
(см.,
например, [10]). Пусть
. Тогда
согласно теореме Пуанкаре, [10],
, откуда
следует утверждаемое в лемме. ■
Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом случае имеет место утверждение, аналогичное теореме 3.
Теорема 3*. Наилучшее приближение любого изображения f(×) изображениями (17*) имеет вид
,
Где :
ортогональный проектор на линейную оболочку
,
собственных векторов задачи
.
Невязка наилучшего приближения равна
. n
Рассмотрим теперь задачу наилучшего
приближения изображения f(×) изображениями
(17), в которых заданы и фиксированы векторы ,
и надлежит определить измеримое разбиение
и
функции
, как решение задачи
(30)
При любом разбиении минимум в (30) по
достигается при
, определяемых равенством
(20). В свою очередь, очевидно, что
(31)
где точки ,
в которых выполняется равенство
могут
быть произвольно включены в одно из множеств : либо в
, либо в
. Это соглашение отмечено
звездочкой в (31).
Таким образом доказана
Теорема 6. Пусть заданные векторы Rn. Решением задачи (30) является
изображение
,
где ортогональный проектор определен равенством
(25), а
- индикаторная
функция множества (31), i=1,...,N. Невязка наилучшего приближения
равна
. n
Замечание 5. Так как при
,
то условия (31), определяющие разбиение , можно записать в виде
,
(32)
показывающем, что множество в (32) инвариантно
относительно любого преобразования изображения
,
не изменяющего его цвет.
Теоремы
3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего
приближения изображения f(×)
изображениями (17), при котором должны быть найдены и ci0 , i=1,...,N,
такие, что
.
Теорема 7. Для
заданного изображения f(×) определим множества равенствами (32), оператор
П - равенством (24),
-
равенствами (25). Тогда
,
определено равенством (32), в
котором - собственный
вектор оператора Фi (23), отвечающий наибольшему собственному значению, причем
в (23)
, наконец,
будет
дано равенством (20), в котором
, где
- собственный вектор
оператора
, отвечающий
наибольшему собственному значению
; наконец,
.
n
Замечание 6. Следующая
итерационная процедура полезна при отыскании : Для
изображения f(×)
зададим
и по теореме 5
найдем
и
, затем по теореме 3,
используя
найдем
и
. После этого вновь воспользуемся
теоремой 3 и по
найдем
и
и т.д. Построенная таким
образом последовательность изображений
очевидно
обладает тем свойством, что числовая последовательность
, k=1,2,.….. монотонно не возрастает и, следовательно, сходится.
К сожалению ничего определенного нельзя сказать о сходимости последовательности
.
Формы (10) и
(9) удобно задавать операторами
Пf и
П*f
соответственно.
Теорема 7. Форма
в
широком смысле изображения
определяется
ортогональным проектором П*f :
,
при этом и
.
Доказательство.
Так как для
, то получаем первое
утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу
на минимум
,
решение которой определяется условиями (см., например, [11])
. Отсюда следует, что
и тем самым доказано и
второе утверждение n
Замечание. Так как , где fi(x) - выходной
сигнал i-го детектора в точке
, причем fi(x)³0 ,i=1,...,n,
и, следовательно цвет
реальных
изображений непременно имеет неотрицательные
, то для реальных
изображений
,
условия
и
, эквивалентны. Если же для
некоторого
, то условие
не влечет
. Заметим также, что для
изображений g(×),
удовлетворяющих условию
, всегда
.
Для спектрозональных изображений характерна ситуация, при которой k детекторов регистрируют рассеянную объектами солнечную радиацию в диапазоне видимого света, а остальные n-k регистрируют собственное тепловое излучение объектов ( в инфракрасном диапазоне). В таком случае любое изображение можно представить разложением
(40)
В котором
.
Если ИК составляющей солнечного излучения можно пренебречь по сравнению с
собственным излучением объектов, то представляет интерес задача приближения
изображениями f(×) ,
в которых f1(×)
- любая неотрицательная функция из
,
j1(×) - фиксированное векторное поле цвета, f2(×) - термояркость, j2(×) -
термоцвет в точке
. Форма П*f видимой компоненты f(×) (40)
определяется как оператор наилучшего приближения в задаче
,
в данном случае
,
причем П*f
действует фактически только на "видимую
компоненту" g(×), обращая "невидимую, ИК, компоненту" g(×) в
ноль.
Форма ИК компоненты f(×) может быть определена лишь тогда, когда известно множество возможных преобразований j2(×) f2(×).
Некоторые применения.
Задачи идентификации сцен.
Рассмотрим вначале задачи идентификации сцен по их изображения, неискаженным геометрическими преобразованиями, поворотами, изменениями масштаба и т.д. Ограничимся задачами, в которых предъявляемые для анализа изображения получены при изменяющихся и неконтролируемых условиях освещения и неизвестных и, вообще говоря, различных оптических характеристиках сцены.
1). Задачи идентификации при произвольно меняющейся интенсивности освещения.
Можно ли считать f(×) и g(×) изображениями одной и той же сцены, возможно, отличающимя лишь распределениями яркости, например, наличием теней?
В простейшем случае для
идентификации достаточно воспользоваться теоремой 5, а именно, f(×) и g(×) можно
считать изображениями одной и той же сцены, если существует распределение цвета
, для которого v(j(×))
содержит f(×) и g(×). Если
, и
, то, очевидно, существует
, при котором f(x)Îv(j(×)), g(x)Îv(j(×)), а
именно,
,
, если
,
, если
, и, наконец,
- произвольно, если
.
На практике удобнее использовать другой подход, позволяющий одновременно решать задачи совмещения изображений и выделения объектов. Можно ли, например, считать g(×) изображением сцены, представленной изображением f(×)? Ответ следует считать утвердительным, если
.
Здесь j(×) -
распределение цвета на изображении f(×), символ ~0
означает, что значение d(g(×)) можно объяснить наличием шума, каких-либо других погрешностей,
или, наконец, - наличием или, наоборот, отсутствием объектов объясняющим
несовпадение g(×) и f(×) с точностью до преобразования распределения яркостей. Такие
объекты, изменившие распределение цвета g(×) по
сравнению с распределением цвета f(×), представлены в .
2).Идентификация при произвольном изменении распределения интенсивности и пространственно однородном изменении спектрального состава освещения.
Можно ли считать изображением сцены, представленной на изображении f(×), изображение, полученное при изменившихся условиях регистрации, например, перемещением или изменением теней и изменением спектрального состава освещения?
Пусть П - форма в широком
смысле изображения f(×), определенная в теореме @, П*
- форма f(×). Тогда ответ на поставленный вопрос можно считать утвердительным,
если . Если изменение g(×)
обусловлено не только изменившимися условиями регистрации, но также появлением
и (или) исчезновением некоторых объектов, то изменения, обусловленные этим
последним обстоятельством будут представлены на
.
3). Задачи совмещения изображений и поиска фрагмента.
Пусть f(×) - заданное изображение, AÌX - подмножество поля зрения, cA(×) - его индикатор, cA(×)f(×) -назовем фрагментом изображения f(×) на подмножестве A, представляющем выделенный фрагмент сцены, изображенной на f(×). Пусть g(×) - изображение той же сцены, полученное при других условиях, в частности, например, сдвинутое, повернутое, т.е. геометрически искаженное по сравнению с f(×). Задача состоит в том, чтобы указать на g(×) фрагмент изображения, представляющий на f(×) фрагмент сцены и совместить его с cA(×)f(×).
Ограничимся случаем, когда
упомянутые геометрические искажения можно моделировать группой преобразований R2->R2, преобразование изображения назовем сдвигом g(×) на h.
Здесь
Q(h): Rn->Rn, hÎH, - группа операторов. Векторный сдвиг на h¢ÎH даст
.
В задаче выделения и совмещения фрагмента рассмотрим фрагмент сдвинутого на h изображения g(×) в “окне” A:
(100)
причем, поскольку где
то в (100)
- ограничение на сдвиг
“окна” А, которое должно оставаться в пределах поля зрения X.
Если кроме цвета g(×) может
отличаться от f(×), скажем, произвольным преобразованием распределения яркости при
неизменном распределении цвета и - форма
фрагмента f(×), то задача выделения и совмещения фрагмента сводится к следующей
задаче на минимум
.(101)
При этом считается, что фрагмент изображения g(×), соответствующий фрагменту cA(×)f(×), будет помещен в “окно”.А путем соответствующего сдвига h=h*, совпадает с cA(×)f(×) с точностью до некоторого преобразования распределения яркости на нем. Это означает, что
.
т.е. в (101) при h=h* достигается минимум.
4). В ряде случаев возникает следующая задача анализа спектрозональных изображений: выделить объекты которые “видны”, скажем, в первом канале и “не видны” в остальных.
Рассмотрим два изображения и
. Определим форму в широком
смысле
как множество всех линейных
преобразований
:
(A - линейный
оператор R2->R2, не зависящий от xÎX). Для определения проектора на
рассмотрим
задачу на минимум
. [*]
Пусть ,
, тогда задача на минимум
[*] эквивалентна следующей: tr A*AS - 2trAB ~
. Ее решение
(знаком - обозначено
псевдообращение).
=
=
Рис.1.
fe - вектор выходных сигналов детекторов, отвечающий излучению e(×), je - его цвет; j1,j2,j3, - векторы (цвета) базовых излучений, b - белый цвет, конец вектора b находится на пересечении биссектрис.
Литература.
[1] Пытьев Ю.П. Морфологические понятия в задачах анализа изображений, - Докл. АН СССР, 1975, т. 224, №6, сс. 1283-1286.
[2] Пытьев Ю.П. Морфологический анализ изображений, - Докл. АН СССР, 1983, т. 296, №5, сс. 1061-1064.
[3] Пытьев Ю.П. Задачи морфологического анализа изображений, - Математические методы исследования природных ресурсов земли из космоса, ред. Золотухин В.Г., Наука, Москва, 1984, сс. хххх-ххххх.
[4] Пытьев Ю.П., Чуличков А.И. ЭВМ анализирует форму изображения, - Знание,сер. Математика, Кибернентика, Москва, 1988, 47 стр.
[5] Yu.P.Pyt’ev. Morphological Image Analysis, Patt. Recogn. and Image Analysis, 1993, v.3, #1, pp.19-28.
[6] Антонюк В.А., Пытьев Ю.П. Спецпроцессоры реального времени для морфологического анализа реальных сцен. Обработка изображений и дистанционное исследования, -Новосибирск, 1981, сс. 87-89.
[7] Антонюк В.А., Пытьев Ю.П., Рау Э.И. Автоматизация визуального контроля изделий микроэлектроники,Радиотехника и электроника, 1985, т. ХХХ,№12, сс. 2456-2458.
[8] Ермолаев А.Г., Пытьев Ю.П. Априорные оценки полезного сигнала для морфологических решающих алглритмов, - Автоматизация, 1984, №5, сс. 118-120.
[9] Пытьев Ю.П, Задорожный С.С., Лукьянов А.Е. Об автоматизации сравнительного морфологического анализа электронномикроскопических изображений, - Изв. АН СССР, сер. физическая, 1977, т. 41, №11, сс. хххх-хххх.
[10] A.A. Stepanov, S.Yu. Zheltov, Yu.V. Visilter. Shape analysis using Pyt'ev morphological paradigm and its using in machine vision. Proc. SPIE - Th. Intern. Soc. For Optical Engineering Videometrics III, 1994, v. 2350, pp. 163-167.
[11] Пытьев Ю.П.. Математические методы интерпретации эксперимента, Высшая школа, 351 стр., 1989.
[12] Майзель С.О. Ратхер Е.С. Цветовые расчеты и измерения. М:Л:Госэнергоиздат 1941, (Труды всесоюзного электротехнического института, вып.56).
[13] P. Kronberg. Fernerkundung der Erde Ferdinand Enke. Verlag Stuthgart 1985.
[1] Например, в связи с изменением времени суток, погоды, времени года и т.п.
[2] Фрагмент морфологического анализа цветных изображений содержится в работе[3].
[3] вектор fe будет иметь отрицательные координаты, если он не принадлежит вы].
[3] вектор fe будет иметь отрицательные координаты, если он не принадлежит выпуклому конусу
[4]черта символизирует замыкание, - выпуклый замкнутый конус в Rn.
[5] Если - более детальное изображение , то некоторые A(j) могут “ращепиться” на несколько подмножеств A¢(j¢), на каждом из которых цвет постоянный, но различный на разных подмножествах A¢(j¢). Однако, поскольку форма обычно строится исходя из данного изображения f(×), v(f(×)) не может содержать изображения, которые более детально характеризуют изображенную сцену.
[6] Для простоты яркость изображения считается положительной в каждой точке поля зрения Х.
[7]- класс неотрицательных функций принадлежащих .
[8]Одна и та же буква F использована как для оператора , так и для оператора . Эта вольность не должна вызывать недоразумения и часто используется в работе.
[9]Если m(As)=0, то в задаче наилучшего приближения (18) цвет и распределение яркости на As можно считать произвольными, поскольку их значения не влияют на величину невязки s.
[10]Векторы j1,..., jq выбираются, например, сообразно цветам объектов, представляющих интерес.