Реферат: О некоторых применениях алгебры матриц

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

 КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Х.М. Бербекова

Математический факультет

Кафедра геометрии и высшей алгебры

Лакунова   Залина

                         

Дипломная работа

«О некоторых применениях алгебры матриц»

Научный руководитель:

д.ф.-м.н.,проф.каф. Г и В А                                          /В.Н.Шокуев /

Рецензент:

к.ф.-м.н.,доцент                                                              /В.М.Казиев/

Допущена к защите                                                           2002г.

Заведующий кафедрой

к.ф.-м.н.,доцент                                                              /А.Х.Журтов/

Нальчик 2002

Оглавление

                                                                                                          стр.

Введение                                                                                          3                

§1. О правиле Крамера                                                                   4

§2. Применение циркулянтов малых порядков в теории чисел   9

§3. Матричный вывод формулы Кардано                                              17

Литература                                                                                      21                                                                               

 

                           

Отзыв

 

О дипломной работе «О некоторых применениях алгебры матриц».

Студентки 6 курса МФ специальности «математика» Лакуновой З.

В данной дипломной работе рассматривается новые применения матриц в теории систем линейных уравнений, теории чисел и теории алгебраических уравнений малых степеней.

В §1 дается новый (матричный) вывод правила Крамера для решения любых квадратных систем линейных уравнений с неравным нулю определителем.

В §2 получено тождество (1) , которое используется для доказательства некоторых теоретико-числовых фактов (предложения 1-4); при этом  основную роль играют матрицы- циркулянты и их определители. Здесь попутно доказана теорема о среднем арифметическом и среднем геометрическом трех положительных чисел.

В §3  дается новый вывод правила Кардано для решения кубических уравнений; его можно назвать «матричным выводом» , поскольку он опирается на свойства циркулянта (третьего порядка).

Считаю, что результаты получения в дипломной работе студентки Лакуновой З. удовлетворяют требованиям, предъявляемым к дипломным работам, и могут быть допущены к защите.

Предварительная оценка – «хорошо»

д.ф.-м.н., проф.каф.  Г и ВА                                        /В.Н.Шокуев/     

§1. О правиле Крамера

В литературе известны разные способы решения Крамеровой системы линейных алгебраических уравнений. Один из них – матричный способ – состоит в следующем.

Пусть дана Крамерова система, т.е. квадратная система  линейных уравнений с неизвестными

                                                  (1)

Определитель которой отличен от нуля:

                                             (2)

Систему (1) можно представить в виде одного матричного уравнения

                                                           (3)

где - матрица коэффициентов при неизвестных системы (1),

                                                                   (4)

- столбец (Матрица-столбец) неизвестных

- столбец свободных членов системы (1)

Так как , то матрица  невырожденная и для нее существует обратная матрица . Умножив равенство (3) на  (слева), получим (единственное) решение системы в следующей матричной форме (в предположении, что она совместима и - ее решение)

,

где обратная матрица  имеет вид:

(-алгебраическое дополнение элемента  в определителе )

Другой известный способ можно назвать методом алгебраических дополнений. Его использование предполагает владение понятием алгебраического дополнения  как и в матричном способе, теоремой о разложении определителя по столбцу (строке), теоремами о замещении и об аннулировании.

         Предлагаемый нами новый метод опирается на теорему Коши-Бине об определителе произведения матриц.

         Суть этого метода можно понять легко, если сначала рассмотрим случай . Очевидно, что при  выполняются следующие матричные равенства (если задана система (1)):

Переходя к определителям в этих равенствах и обозначив определители правых частей соответственно через  получим формулы Крамера:

     ()

   (Правило Крамера)

Переход к общему случаю Крамеровых систем (1) порядка  ничего по существу не меняет. Просто следует заметить, что матрица  с определителем   получается из единичной матрицы заменой -го столбца столбцом неизвестных:

                                          (5)

Теперь из  равенств

  ,

где - матрица, получающаяся заменой - го столбца матрицы  столбцом свободных членов системы (1), причем к формулам Крамера, взяв определители от обеих частей в каждом равенстве:

, откуда ввиду  имеем

  .

(здесь  получается из , как и  из ).

Другой, еще более короткий способ отыскания решения системы (1) состоит в следующем (по-прежнему ): пусть система (1) совместна и числа  (после переобозначений) образуют ее решение. Тогда при  имеем, используя два линейных свойства определителя:

 

         Можно начать и с определителя , в котором вместо свободных членов в -м столбце подставлены их выражения согласно (1); используя соответствующие свойства определителя, получим:

  (),

откуда и получаются формулы Крамера.

         Замечание. Проверка того, что значения неизвестных, определяемые по формуле Крамера удовлетворяют системе (1), (т.е. образуют решение системы), производится одним из известных способов.

§2. Применение циркулянтов малых порядков в теории чисел.

Матрица вида:

  

- называется циклической матрицей или циркулянтом (третьего порядка), а ее определитель – циклическим определителем. Циклическим определителем некоторые авторы называют также циркулянтом.

Пусть дан циклический определитель (Циркулянт)

 .

Прибавив первые две строки к третьей, получим:

.

Вынесем общий множитель  из последней строки:

.

Так как

,

то

.

С другой стороны, по определению детерминанта имеем:

Следовательно, выполняется тождество

(1)

Имеет место следующее предложение.

Предложение 1. Уравнение

                                                 (2)

не имеет решений в натуральных числах

Доказательство: Если - вещественные положительные числа, не все равные между собой, то

                                              (3)

Пусть - не все равные между собой положительные числа. Тогда существуют положительные числа  и , не все равные между собой, такие, что . К этим числам применим тождество (1). Так как не все числа  между собой равны, то последний сомножитель правой части тождества (1) есть число положительное и, следовательно,

,

.                                    (4)

Так как , то неравенство (4) дает неравенство (3). (Неравенство (3) можно переписать в виде ; получим известный факт о том, что среднее арифметическое трех положительных, не равных между собой чисел больше их среднего геометрического).

         Пусть  и - натуральные числа, удовлетворяющие уравнению (2). Представляются две возможности: либо числа  все равны между собой, либо не все эти числа равны друг другу.

         В первом случае все они должны быть равны 1, так как она положительные и , и мы имели бы:

- противоречие.

         Значит, не все три числа  равны между собой; поэтому в силу неравенства (3) имеем

,

 

откуда

.

Таким образом, доказано что уравнение

не имеет решений в натуральных числах .

Предложение 2. Уравнение

                                              

разрешимо в натуральных числах .

Доказательство: удовлетворяют нашему уравнению. Если не все три числа  между собой равны, то как мы видели в ходе доказательства Предложения (1), выполняется неравенство

- противоречие. Таким образом, должно быть , и из нашего уравнения следует, что каждое из этих чисел равно 1, так что .

Поэтому получаем

.

Итак, мы доказали, что заданное уравнение имеет бесконечно много решений в натуральных числах .

Предложение 3. Произведение двух чисел, каждое из которых является суммой двух квадратов, представимо в виде суммы двух квадратов.

Доказательство: Рассмотрим следующее произведение двух циклических матриц (второго порядка)

где - мнимая единица. Переходя к определителям, получим равенство

.              (5)

Предложение 4. Если число представляемое в виде суммы двух квадратов, делится на простое число, являющееся суммой двух квадратов, то частное также является суммой двух квадратов.

Доказательство: Пусть число  делится на простое число  вида :

.

Требуется доказать, что частное  имеет вид  .

Предположим, что задача уже решена, т.е.

,                                        (6)

и с помощью анализа попробуем найти искомые числа  и . Гипотетическое равенство (6) подсказывает целесообразность рассмотрения матричных равенств.

и

перемножив правые части этих равенств, получим:

отсюда имеем:

                                                 (7)

                                                        (8)

.    (9)

Так как - простое число и  делит , то равенство (9) показывает, что  или  делится на .

         Пусть . Тогда из тождества

,

верного в силу (5) следует, что на  делится и число , а поскольку - простое, , так что в силу (7) - целое число. Таким образом, в рассматриваемом случае имеем:

и Предложение 4 доказано.

Если же , т.е. в силу (8) - целое, то, рассуждая как и выше, можем написать:

;

отсюда следует, что , т.е. - целое. В этом случае

.

§3. Матричный вывод формулы Кардано

В этом параграфе предлагается новый подход к выводу формулы Кардано для корней кубического произведения уравнения.

         Пусть дано любое кубическое уравнение

   .                                    (1)

Если - его корень, то , поэтому 

, т.е.  есть корень уравнения, получающегося из (1) делением всех коэффициентов т правой части на , и обратно. Поэтому (1) эквивалентно уравнению.

.                                        (2)

Таким образом, можно сказать, что решение любого кубического уравнения сводится к решению кубического уравнения со старшим коэффициентом, равным 1, т.е. уравнения вида

,                                           (3)

которое получается из (2) после переобозначения коэффициентов; такое уравнение называется унитарным. Если к уравнению (3) применить подстановку

,                                                        (4) 

получим:

, т.е.

,                                                                                   (5)

где  и  определяются по заданным коэффициентам  уравнения (3). Уравнение (5) эквивалентно уравнению (3), поэтому достаточно научиться решать уравнения типа (5). В силу этого, обозначив через  неизвестное, мы видим, что решение любого кубического уравнения вида

,                                             (6)

называется приведенным или (неполным) кубическим уравнением. Покажем теперь, как можно найти все корни уравнения (6). Для этого заметим, что в силу тождества (1) §2, полученного с использованием циркулянта третьего порядка имеет место тождество

 ,     (7)

где - любые числа, - один из корней третьей степени из единицы, так что  (проверка тождества опирается на равенство ). Попробуем теперь отождествить наше уравнение (6) с уравнением

,                                                 (8)

т.е. положим

где и  пока неизвестны. Чтобы вычислить их, имеем систему

которая показывает (в силу теоремы Виета), что  и  являются корнями квадратного уравнения

т.е.

  

и поэтому

                                     (9)

Таким образом, уравнение (6) эквивалентно уравнению (8), в котором  и  определяются по формулам (9). В свою очередь, уравнение (8) в силу (7) равносильно уравнению

и теперь получаем:

                     (10)

где  и  определяются по (9). При этом надо иметь ввиду, что кубические корни из (9) имеют по три значения и их необходимо комбинировать с учетом равенства ; если одна пара значений  и  выбрана указанным образом, то все три корня определяются по формулам (10). Сказанное можно представить и по другому; можно сказать, что значения неизвестного  определяются из равенства

т.е.

                        (11)

причем остается в силе сказанное относительно комбинаций значений этих кубических радикалов.

         Формула (11) и есть знаменитая формула Кардано.

ЛИТЕРАТУРА

1.   Ф. Бахман, Э. Шмидт. n- угольник «Мир», М., 1973 г.

2.   Э. Чезаро. Элементарный учебник алгебраического анализа и исчисления бесконечно малых ч. 1 М.Л., 1936 г.

3.   В. Серпинский. 250 задач по элементарной теории чисел. М., 1968 г.

4.   Р. Курант, Г. Роббинс Что такое математика ? «Просвещение», М.,  1967 г.

5.   А.Г. Курош. Курс высшей алгебры. М., Наука, 1976 г.

6.   Эдвардс. Теорема Ферма. Генетическое введение в алгебраическую теорию чисел. «Мир», М., 1980 г.