Реферат: Преобразования фигур

Малоязовская башкирская гимназия

Геометрия

Реферат

на тему:

“Преобразования фигур”

Выполнил: ученик 10 Б класса

Халиуллин А.Н.

Проверила: Исрафилова Р.Х.

Малояз 2003 год

План:

 I. Преобразование.

II. Виды преобразований

1.   Гомотетия

2.   Подобие

3.   Движение 

III. Виды движения

1. Симметрия относительно точки

        2. Симметрия относительно прямой

        3. Симметрия относительно плоскости

        4. Поворот

        5. Параллельный перенос в пространстве

I.       Преобразование - смещение каждой точки данной фигуры каким-нибудь образом, и получение новой фигуры.

II.      Виды преобразования в пространстве: подобие, гомотетия, движение.

 

Подобие

          Свойства подобия: 1. Подобие переводит прямые в прямые, полупрямые – в полупрямые, отрезки – в отрезки.

2. Подобие сохраняет углы между полупрямыми

3.  Подобие переводит плоскости в плоскости.

Две фигуры называются подобными, если они переводятся  одна в другую преобразованием подобия.

Гомотетия

Гомотетия – простейшее преобразование  относительно центра O с коэффициентом гомотетии k. Это преобразование, которое переводит произвольную точку X’ луча OX, такую, что OX’ = k*OX.

Свойство гомотетии: 1. Преобразованием гомотетии переводит любую плоскость, не проходящую через центр гомотетии, в параллельную плоскость (или в себя при k=1).

Доказательство. Действительно, пусть O – центр гомотетии и a - любая плоскость, не проходящая через точку O. Возьмем любую прямую AB в плоскости a. Преобразование гомотетии  переводит точку A в точку A’ на луче OA, а точку B в точку B’ на луче OB, причем OA’/OA = k, OB’/OB = k, где k – коэффициент гомотетии. Отсюда следует подобие треугольников AOB и A’OB’. Из подобия треугольников следует равенство соответственных углов OAB и OA’B’, а значит, параллельность прямых AB и A’B’. Возьмем теперь другую прямую AC в плоскости a. Она при гомотетии перейдет а параллельную прямую A’C’. При рассматриваемой гомотетии плоскость aперейдет в плоскость a’, проходящую через прямые A’B’, A’C’. Так как A’B’||AB и A’C’||AC, то по теореме  о двух пересекающихся прямых одной плоскости соответственно параллельными  с пересекающимися прямыми другой плоскости,  плоскости a и a’ параллельны, что и требовалось доказать.

 

Движение

          Движением - преобразование одной фигуры в другую  если оно сохраняет расстояние между точками, т.е. переводит любые две точки X и Y одной фигуры в точки X , Y другой фигуры так, что XY = X Y

          Свойства движения: 1. Точки, лежащие на прямой, при движении переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного расположения. Это значит, что если A, B, C, лежащие на прямой, переходят в точки A1,B1,C1. То эти точки также лежат на прямой; если точка B лежит между точками A и C, то точка B1 лежит между точками A1 и C1.

 

          Доказательство. Пусть точка B прямой AC лежит между точками A и C. Докажем, что точки A1,B1,C1 лежат на одной прямой.

          Если точка  A1,B1,C1 не лежат на прямой, то они являются вершинами треугольника. Поэтому A1C1 < A1B1 + B1C1. По определению движения отсюда следует, что AC<AB+BC. Однако по свойству измерения отрезков AC=AB+BC.

          Мы пришли к противоречию. Значит, точка B1 лежит на прямой A1C1. Первое утверждение теоремы доказано.

          Покажем теперь, что точка B1 лежит между A1 и C1. Допустим, что точка A1 лежит между точками B1 и C1. Тогда A1B1 + A1C1 = B1C1, и, следовательно, AB+AC=BC. Но это противоречит неравенству AB+BC=AC. Таким образом, точка A1 не может лежать между точками B1 и C1.

          Аналогично доказываем, что точка C1 не может лежать между  точками A1 и B1.

          Так как из трех точек A1,B1,C1 одна лежит между двумя другими, то этой точкой может быть только B1. Теорема доказана полностью.

2. При движении прямые переходят в прямые, полупрямые – в полупрямые, отрезки – в отрезки

3. При движении сохраняются углы между полупрямыми.

          Доказательство. Пусть AB и AC – две полупрямые, исходящие из точки A, не лежащие на оной прямой. При движении эти полупрямые переходят в некоторые полупрямые A1B1 и A1C1. Так как движение сохраняет расстояние, то треугольники ABC и A1B1C1 равны по третьему признаку равенства треугольников. Из равенства треугольников следует равенство углов BAC и B1A1C1, что и требовалось доказать.

4. Движение переводит плоскость в плоскость.

          Докажем это свойство. Пусть a - произвольная плоскость. Отметим на ней любые три точки A, B, C, не лежащие на одной прямой. Проведем через них плоскость a'.

          Докажем, что при рассматриваемом движении плоскость a переходит в плоскость a'.

          Пусть  X - произвольная точка плоскости a. проведем через нее какую-нибудь прямую a в плоскости a, пересекающую треугольник ABXC в двух точках Y и Z. Прямая а перейдет при движении в некоторую прямую a'. Точки Y и Z прямой a перейдут в точки Y' и Z', принадлежащие треугольнику A'B'C', а значит, плоскости a'.

          Итак прямая a' лежит в плоскости a'. Точка  X при движении переходит в точку X' прямой a', а значит, и плоскости a', что и требовалось  доказать.

          В пространстве, так же как и на плоскости, две фигуры называются равными, если они совмещаются движением.

 

III.    Виды движения: симметрия относительно точки, симметрия относительно прямой, симметрия относительно плоскости, поворот, движение, параллельный перенос.

          Симметрия относительно точки

          Пусть О - фиксированная точка и X - произвольная точка плоскости. Отложим на продолжении отрезка OX за точку O отрезок OX', равный OX. Точка X' называется симметричной точке X относительно точки O. Точка, симметричная точке O, есть сама точка O. Очевидно, что точка, симметричная точке X', есть точка X.

          Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной точке O, называется преобразованием симметрии относительно точки O.  При этом фигуры F и F' называются симметричными относительно точки O.

Если преобразование симметрии относительно точки O переводит фигуру F в себя, то она называется центрально-симметричной, а точка O называется центром симметрии.

          Например, параллелограмм является центрально-симметричной фигурой. Его центром симметрии  является точка пересечения диагоналей. 

          Теорема: Преобразование симметрии относительно точки является движением.

          Доказательство. Пусть X и Y - две произвольные точки фигуры F. Преобразование симметрии относительно точки O переводит их в точки X' и Y'. Рассмотрим треугольники XOY и X'OY'. Эти треугольники равны по первому признаку равенства треугольника. У них углы при вершине O равны как вертикальные, а OX=OX', OY=OY' по определению симметрии относительно точки O. Из равенства треугольников следует равенство сторон: XY=X'Y'. А значит, что симметрия относительно точки O есть движение. Теорема доказана.

          Симметрия относительно прямой

          Пусть g - фиксированная прямая. Возьмем произвольную точку X и опустим перпендикуляр AX н прямую g. На продолжении перпендикуляра за точку A отложим отрезок AX', равный отрезку AX. Точка X' называется симметричной точке X относительно прямой g. Если точка X лежит на прямой g, то симметричная ей точка есть сама точка X. Очевидно, что точка, симметричная точке X', есть точка X.

          Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной прямой g, называется преобразованием симметрии относительно прямой g. При этом фигуры F и F' называются симметричными относительно прямой g.

          Если преобразование симметрии относительно прямой g переводит фигуру F в себя, то эта фигура называется симметричной относительно прямой g, а прямая g называется осью симметрии фигуры.

          Например, прямые, проходящие через точку пересечения диагоналей прямоугольника параллельно его сторонам, является осями симметрии прямоугольника. Прямые на которых лежат диагонали ромба, является его осями симметрии.

          Теорема: Преобразование симметрии относительно прямой является движением.

          Доказательство. Примем данную прямую за ось у декартовой системы координат. Пусть произвольная точка A (x;y) фигуры F переходит в точку A' (x';y') фигуры F'. Из определения симметрии относительно прямой следует, что у точек A и A' равные ординаты, а абсциссы отличаются только знаком: x' = -x.

          Возьмем две произвольные точки A (x;y) и B (x;y). Они перейдут в точки A' (-x;y) и B' (-x;y).

          Имеем:

                   AB2=(x2-x1)2+(y2-y1)2

                   A'B'2=(-x2+ x1) 2+(y2-y1)2

          Отсюда видно, что AB=A'B'. А значит, что преобразование симметрии относительно прямой есть движение. Теорема доказана.

         

Симметрия относительно плоскости

          Пусть a - произвольная фиксированная плоскость. Из точки X фигуры опускаем перпендикуляр XA на плоскость a и на его продолжении за точку Aоткладываем отрезок AX', равный XA. Точка X' называется симметричной точке X относительно плоскости a, а преобразование, которое переводит X в симметричную ей точку X', называется преобразованием симметрии относительно плоскости a.

          Если точка X лежит в плоскости a, то считается, что точка X переходит в себя. Если преобразование симметрии относительно плоскости a переводит фигуру в себя, то фигура называется  симметричной относительно плоскости a, а плоскость a называется плоскостью симметрии этой фигуры.

          Поворот

          Поворот плоскости около данной точки называется такое движение, при котором каждый луч, исходящий из точки, поворачивается на один и тот же угол в одном и том же направлении.
Это значит, что если при поворот около точки  O точка переходит в точку X', то лучи OX и OX' образуют один и тот же угол, какова бы ни была точка X. Этот угол называется углом поворота. Преобразование фигур при повороте плоскости также называется поворотом.

          Параллельный перенос в пространстве

          Параллельным переносом в пространстве называется такое преобразование, при котором произвольная точка (x; y; z) фигуры переходит в точку (x+a; y+b; z+c), где числа a,b,c одни и те же для всех точек (x; y; z). Параллельный переносов пространстве задается формулами

                                      x'=x+a, y'=y+b, z'=z+c,

выражающими координаты x', y', z' точки, в которую переходит точка  (x; y; z) при параллельном переносе. Так же, как и на плоскости, доказываются следующие свойства параллельного переноса:

          1. Параллельные перенос есть движение.

          2. При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.

          3. При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).

          4. Каковы  бы ни были точки A и A', существует единственный параллельный перенос, при котором точка A переходит в точку A'.

          Новым для параллельного переноса в пространстве является следующее свойство:

          5. При параллельном переносе в пространстве каждая плоскость переходит либо в себя, либо в параллельную её плоскость.

          Действительно, пусть a - произвольная плоскость, проведем в этой плоскости две пересекающиеся прямые a и b. При параллельном переносе прямые a и b переходят либо в себя, либо в параллельные прямые a' и b'. Плоскость a переходит в некоторую плоскость a', проходящую через прямые a' и b'. Если плоскость a' не совпадает с a, то по теореме о двух пересекающихся прямых одной плоскости соответственно параллельными  с пересекающимися прямыми другой плоскости, она параллельна a, что и требовалось доказать.

Список использованной литературы:

 

1. Учебник Геометрии 7-11 классы. А.В. Погорелов

2. Учебник Геометрии 10-11 классы. А.Д. Александров.

Многомерная геометрия
ОГЛАВЛЕНИЕ Введение Глава I. Элементы общей теории многомерных пространств § 1. Историческая справка § 2. Понятие векторного многомерного пространства ...
Так как при аффинном преобразовании плоскости переходят в плоскости, а параллельные плоскости в параллельные плоскости, это аффинное преобразование переводит весь k- параллелепипед ...
Точка А имеет равные координаты: x = y = z (поскольку при повороте пространства, переставляющем оси координат: , и плоскость L и сфера S переходят в себя, а поэтому их общая точка ...
Раздел: Рефераты по математике
Тип: дипломная работа
Оборудование летательных аппаратов
Практическая работа N12-6 СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ СВС-72-3 (Продолжительность практической работы - 4 часа) I. ЦЕЛЬ РАБОТЫ Целью работы ячвляется ...
7а, б) продольная ось ЛА расположена в плоскости горизонта, совпадает с линией ОВ и параллельна главной оси гироскопа.
вала" конуса НВ относительно плоскости симметрии вертолета при
Раздел: Рефераты по авиации и космонавтике
Тип: реферат
Аффинные преобразования
Глава I.Понятие о геометрическом преобразовании 1.1 Что такое геометрическое преобразование? Осевая симметрия, центральная симметрия, поворот ...
Если на плоскости задана какая-либо фигура F, то множество всех точек, в которые переходят тонки фигуры F при рассматриваемом преобразовании, представляет собой новую фигуру F., В ...
Осевая симметрия, поворот (в частности, центральная симметрия) и параллельный перенос имеют то общее, что каждое из этих преобразований переводит любую фигуру F на плоскости в ...
Раздел: Рефераты по математике
Тип: курсовая работа
Большая коллекция шпор для МАТАНа (1 семестр 1 курс)
1. Векторы. Действия над векторами. Вектором наз. упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n ...
Для составления уравнения прямой М1М2 запишем уравнения пучка прямых, проходящих через точку М1: y-y1=k(x-x1).
Замечание: можно переходить к пределу под знаком непрерывной функции limf(x)=limg(y) limf(x)=f(x0)=y0 x x x x x x
Раздел: Рефераты по математике
Тип: шпаргалка
Геометрические построения на плоскости
Геометрические построения на плоскости Введение Вам, будущим учителям, в школьном курсе математики придется учить ребят решению задач на построение ...
Угол позволяет: а) сделать все построения, выполнимые линейкой; б) через данную точку плоскости провести под углом ѭ к некоторой данной прямой; в) если построены отрезок АВ и ...
ГМТ 6. Множество точек плоскости, из которых отрезок АВ виден под углом ѭ, где ѭ = 90o, ѭ = 180o , есть две дуги с общими концами А и В (без точек А и В), симметричные относительно ...
Раздел: Рефераты по математике
Тип: учебное пособие