Реферат: Решение некоторых уравнений и неравенств с параметром
Графическое решение уравнений, неравенств, систем с параметром.
(алгебра и начала анализа)
Исполнитель: Зырянов Р.Б.
Руководитель: Попова Н.Б.
Екатеринбург 1998
Оглавление
I. Введение
II. Уравнения с параметрами.
§1. Определения.
§2. Алгоритм решения.
§3. Примеры.
III. Неравенства с параметрами.
§1. Определения.
§2. Алгоритм решения.
§3. Примеры.
IV. Список литературы.
V. Приложения.
Введение
Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.
Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.
В моём реферате рассмотрены часто встречающиеся типы уравнений, неравенств и их систем, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов и при поступлении а ВУЗ.
§1. Основные определения
Рассмотрим уравнение
¦(a, b, c, …, k, x)=j(a, b, c, …, k, x), (1)
где a, b, c, …, k, x -переменные величины.
Любая система значений переменных
а = а0, b = b0, c = c0, …, k = k0, x = x0,
при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аÎА, bÎB, …, xÎX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.
Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.
Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.
Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.
Два уравнения, содержащие одни и те же параметры, называются равносильными, если:
а) они имеют смысл при одних и тех же значениях параметров;
б) каждое решение первого уравнения является решением второго и наоборот.
§2. Алгоритм решения.
Находим область определения уравнения.
Выражаем a как функцию от х.
В системе координат хОа строим график функции а=¦(х) для тех значений х, которые входят в область определения данного уравнения.
Находим точки пересечения прямой а=с, где сÎ(-¥;+¥) с графиком функции а=¦(х).Если прямая а=с пересекает график а=¦(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=¦(х) относительно х.
Записываем ответ.
§3. Примеры
I. Решить уравнение
(1)
Решение.
Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а :
или
График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.
Если а Î (-¥;-1]È(1;+¥)È , то прямая у=а пересекает график
уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения
относительно х.
Таким образом, на этом
промежутке уравнение (1) имеет решение .
Если а Î ,
то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих
точек можно найти из уравнений
и
, получаем
и
.
Если а Î ,
то прямая у=а не пересекает график уравнения (1), следовательно решений нет.
Ответ:
Если а Î (-¥;-1]È(1;+¥)È, то
;
Если а Î ,
то
,
;
Если а Î ,
то решений нет.
II. Найти все значения параметра а,
при которых уравнение имеет три
различных корня.
Решение.
Переписав уравнение в виде и рассмотрев пару функций
, можно
заметить, что искомые значения параметра а и только они будут соответствовать
тем положениям графика функции
, при
которых он имеет точно три точки пересечения с графиком функции
.
В системе координат
хОу построим график функции ). Для
этого можно представить её в виде
и,
рассмотрев четыре возникающих случая, запишем эту функцию в виде
Поскольку график функции – это
прямая, имеющая угол наклона к оси Ох, равный
,
и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три
указанные точки пересечения можно получить лишь в случае, когда эта прямая
касается графика функции
.
Поэтому находим производную
Ответ: .
III. Найти все значения параметра а, при каждом из которых система уравнений
имеет решения.
Решение.
Из первого уравнения системы получим при
Следовательно, это
уравнение задаёт семейство “полупарабол” - правые ветви параболы
“скользят” вершинами по оси
абсцисс.
Выделим в левой части второго уравнения полные квадраты и разложим её на множители
Множеством точек плоскости ,
удовлетворяющих второму уравнению, являются две прямые
и
Выясним, при каких значениях параметра а кривая из семейства “полупарабол” имеет хотя бы одну общую точку с одной из полученных прямых.
Если вершины полупарабол находятся правее точки А, но левее точки В (точка В соответствует вершине той “полупараболы”, которая касается
прямой ),
то рассматриваемые графики не имеют общих точек. Если вершина “полупараболы”
совпадает с точкой А, то
.
Случай касания “полупараболы” с прямой определим
из условия существования единственного решения системы
В этом случае уравнение
имеет один корень, откуда находим :
Следовательно, исходная система не имеет решений при , а при
или
имеет хотя бы одно
решение.
Ответ: а Î (-¥;-3] È(;+¥).
IV. Решить уравнение
Решение.
Использовав равенство , заданное
уравнение перепишем в виде
Это уравнение равносильно системе
Уравнение перепишем в виде
.
(*)
Последнее уравнение проще всего решить, используя геометрические
соображения. Построим графики функций и
Из графика следует, что при
графики не пересекаются и,
следовательно, уравнение не имеет решений.
Если , то при
графики функций совпадают
и, следовательно, все значения
являются
решениями уравнения (*).
При графики
пересекаются в одной точке, абсцисса которой
.
Таким образом, при
уравнение (*)
имеет единственное решение -
.
Исследуем теперь, при каких значениях а найденные решения уравнения (*) будут удовлетворять условиям
Пусть , тогда
. Система примет вид
Её решением будет промежуток хÎ
(1;5). Учитывая, что , можно заключить,
что при
исходному уравнению
удовлетворяют все значения х из промежутка [3; 5).
Рассмотрим случай, когда .
Система неравенств примет вид
Решив эту систему, найдем аÎ (-1;7). Но , поэтому при аÎ (3;7) исходное уравнение имеет единственное решение
.
Ответ:
если аÎ (-¥;3), то решений нет;
если а=3, то хÎ [3;5);
если aÎ (3;7), то ;
если aÎ [7;+¥), то решений нет.
V. Решить уравнение
, где а - параметр. (5)
Решение.
1. При любом а :
2. Если , то
;
если , то
.
3.
Строим график функции ,
выделяем ту его часть , которая соответствует
.
Затем отметим ту часть графика функции
,
которая соответствует
.
4. По графику определяем, при каких значениях а уравнение (5) имеет решение и при каких – не имеет решения.
Ответ:
если ,
то
если ,
то
;
если ,
то решений нет;
если ,
то
,
.
VI. Каким условиям должны удовлетворять те значения параметров и
, при которых системы
(1)
и
(2)
имеют одинаковое число решений ?
Решение.
С учетом того, что имеет
смысл только при
, получаем после
преобразований систему
(3)
равносильную системе (1).
Система (2) равносильна системе
(4)
Первое уравнение системы (4) задает в плоскости хОу семейство
прямых, второе уравнение задает семейство концентрических окружностей с центром
в точке А(1;1) и радиусом
Поскольку , а
, то
, и, следовательно, система
(4) имеет не менее четырех решений. При
окружность
касается прямой
и система (4)
имеет пять решений.
Таким образом, если , то
система (4) имеет четыре решения, если
,
то таких решений будет больше, чем четыре.
Если же иметь в виду не радиусы окружностей, а сам параметр а, то
система (4) имеет четыре решения в случае, когда ,
и больше четырех решений, если
.
Обратимся теперь к рассмотрению системы (3). Первое уравнение этой системы задаёт в плоскости хОу семейство гипербол, расположенных в первом и втором квадрантах. Второе уравнение системы (3) задает в плоскости хОу семейство прямых.
При фиксированных положительных а и b система (3) может иметь
два, три, или четыре решения. Число же решений зависит от того, будет ли
прямая, заданная уравнением , иметь
общие точки с гиперболой
при
(прямая
всегда имеет одну точку
пересечения с графиком функции
).
Для решения этого рассмотрим уравнение
,
которое удобнее переписать в виде
Теперь решение задачи сводится к рассмотрению дискриминанта D последнего уравнения:
*
если , т.е. если
, то система (3) имеет два
решения;
*
если , то система (3) имеет три
решения;
*
если , то система (3) имеет
четыре решения.
Таким образом, одинаковое число решений у систем (1) и (2) – это
четыре. И это имеет место, когда .
Ответ:
II. Неравенства с параметрами.
§1. Основные определения
Неравенство
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x), (1)
где a, b, c, …, k – параметры, а x – действительная переменная величина, называется неравенством с одним неизвестным, содержащим параметры.
Любая система значений параметров а = а0, b = b0, c = c0, …, k = k0, при некоторой функции
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
имеют смысл в области действительных чисел, называется системой допустимых значений параметров.
называется допустимым
значением х, если
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
принимают действительные значения при любой допустимой системе значений параметров.
Множество всех допустимых значений х называется областью определения неравенства (1).
Действительное число х0 называется частным решением неравенства (1), если неравенство
¦(a, b, c, …, k, x0)>j(a, b, c, …, k, x0)
верно при любой системе допустимых значений параметров.
Совокупность всех частных решений неравенства (1) называется общим решением этого неравенства.
Решить неравенство (1) – значит указать, при каких значениях параметров существует общее решение и каково оно.
Два неравенства
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x) и (1)
z(a, b, c, …, k, x)>y(a, b, c, …, k, x) (2)
называются равносильными, если они имеют одинаковые общие решения при одном и том же множестве систем допустимых значений параметров.
§2. Алгоритм решения.
1. Находим область определения данного неравенства.
2. Сводим неравенство к уравнению.
3. Выражаем а как функцию от х.
4. В системе координат хОа строим графики функций а =¦ (х) для тех значений х, которые входят в область определения данного неравенства.
5. Находим множества точек, удовлетворяющих данному неравенству.
6. Исследуем влияние параметра на результат.
· найдём абсциссы точек пересечения графиков.
· зададим прямую а=соnst и будем сдвигать её от -¥ до+¥
7. Записываем ответ.
Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа. Возможны и другие методы решения, с использованием стандартной системы координат хОy.
§3. Примеры
I. Для всех допустимых значений параметра а решить неравенство
Решение.
В области определения параметра а, определённого системой неравенств
данное неравенство равносильно системе неравенств
Если , то решения
исходного неравенства заполняют отрезок
.
Ответ: ,
.
II. При каких значениях параметра а имеет решение система
Решение.
Найдем корни трехчлена левой части неравенства –
(*)
Прямые, заданные равенствами (*), разбивают координатную плоскость аОх на четыре области, в каждой из которых квадратный трехчлен
сохраняет постоянный знак. Уравнение (2) задает окружность радиуса 2 с центром в начале координат. Тогда решением исходной системы будет пересечение заштрихован
ной области с окружностью, где , а значения
и
находятся из системы
а значения и
находятся из системы
Решая эти системы, получаем, что
Ответ:
III. Решить неравенство на
в зависимости от значений
параметра а.
Решение.
Находим область допустимых значений –
Построим график функции в системе координат хОу.
·
при неравенство
решений не имеет.
·
при для
решение х удовлетворяет
соотношению
, где
Ответ: Решения неравенства существуют при
, где
, причем при
решения
; при
решения
.
IV. Решить неравенство
Решение.
Находим ОДЗ или линии разрыва (асимптоты)
Найдем уравнения функций, графики которых нужно построить в ПСК; для чего перейдем к равенству :
Разложим числитель на множители.
т. к. то
Разделим обе части равенства на при
. Но
является решением : левая
часть уравнения равна правой части и равна нулю при
.
3. Строим в ПСК хОа графики функций
и нумеруем образовавшиеся области (оси роли не играют). Получилось девять областей.
4. Ищем, какая из областей подходит для данного неравенства, для чего берем точку из области и подставляем в неравенство.
Для наглядности составим таблицу.
№ | точка |
неравенство:
|
вывод |
1 |
|
|
- |
2 |
|
|
+ |
3 |
|
|
- |
4 |
|
|
+ |
5 |
|
|
- |
6 |
|
|
+ |
7 |
|
|
- |
8 |
|
|
+ |
9 |
|
|
- |
5. Найдем точки пересечения графиков
6. Зададим прямую а=сonst и будем сдвигать её от -¥ до +¥.
Ответ.
при
при
при
при решений
нет
при
Литература
1. Далингер В. А. “Геометрия помогает алгебре”. Издательство “Школа - Пресс”. Москва 1996 г.
2. Далингер В. А. “Все для обеспечения успеха на выпускных и вступительных экзаменах по математике”. Издательство Омского педуниверситета. Омск 1995 г.
3. Окунев А. А. “Графическое решение уравнений с параметрами”. Издательство “Школа - Пресс”. Москва 1986 г.
4. Письменский Д. Т. “Математика для старшеклассников”. Издательство “Айрис”. Москва 1996 г.
5. Ястрибинецкий Г. А. “Уравнений и неравенства, содержащие параметры”. Издательство “Просвещение”. Москва 1972 г.
6. Г. Корн и Т.Корн “Справочник по математике”. Издательство “Наука” физико–математическая литература. Москва 1977 г.
7. Амелькин В. В. и Рабцевич В. Л. “Задачи с параметрами” . Издательство “Асар”. Минск 1996 г.