Реферат: Шпоры по Вышке (ИГЭА, Препод Дыхта В.А.)
Осн. понятия
Грани числовых мн-в
Числовые последовательности
Непр. ф-ции на пр-ке
Сходящиеся и расходящиеся посл-ти
Св-ва сходящихся посл-тей
Теорема «Об единственности пределов»
Теорема «Сходящаяся посл-ть ограничена»
Теорема «О сходимости монотон. посл-ти»
Экспонента или число е
Ф-ции одной переменной
Обратные ф-ции
Предел ф-ции в точке
Свойства предела ф-ции в точке
Односторонние пределы ф-ции в т-ке:
Предел ф-ции в т-ке
Предел и непрерывность функции
Предел. Односторонний предел.
Пределы ф-ции на бесконечности
Два замечательных предела
Б/м ф-ции и их сравнения
Непрерывные ф-ции. Непрерывность.
1. Осн. понятия
Мн-во вещест. чисел разбивается: на рационал. и иррац. Рац. – число, которое можно представить в виде p/q где p и q – цел. числа. Иррац. – всякое вещественное число, которое не явл. рационал.
Любое вещ. число можно представить в виде бесконеч. десят. Дроби а, а1,а2…аn… где а –люб. число, а а1, а2 … аn числа, приним. целые знач.
Некоторые числовые множества.
Мн-ва – первичное понятие, на уровне здравого смысла, его не возможно точно определить.
Для описания мн-в единая символика, а именно, если в мн-во А входят только эл. х, которые обладают некоторым св-вом S(x), то тогда мн-во А описывается А={х вып-ся усл S(x)}.
Подмн-ва – если А и В 2 мн-ва и все эл-ты мн-ва А сод-ся в В, то А наз-ся подмн-вом В, А В, если в В сод-ся эл-ты отличные от эл-тов мн-ва А, то В строго шире А, то А наз-ся собственным подмн-вом В. АВ. А=В- мн-ва совпадают.
Операции с мн-воми А В={х!х принадл. либо А, либо В} – обьединение мн-в А и В.
А В={ххА и хВ} пересечение мн-в А и В.
А\ В={ххА, но хВ}дополн. к м-ву В во мн-ве А
Числовые мн-ва
R,N,Z,Q - стандартные обозначения мн-в на числ. прямой. (а,в)= {ха<х<в} – интервал из R (открытый промежуток, т.к. не содержит границ)
[а,в] – замкнутый промежуток сод. гранич. т-ки.
(а,в] – полуинтервал.
Окрестностью т-ки х наз-ся любой интервал содержащий т-ку х, необязательно симметричную.
2. Грани числовых мн-в
Пусть Х – непустое мн-во веществ. чисел.
Мн-во Х назся огран. сверху(снизу), если сущ-ет число с такое, что для любого х Х вып-ся неравенство сх(хс). Число с наз-ся верхн.(нижн.) гранью мн-ва Х. Мн-во, огран. сверху и снизу наз-ся ограниченым
Если мн-во имеет 1 верхнюю грань то она имеет их бесчисленное мн-во.
Пример X=R+ - ограничено снизу, но не сверху, значит не ограничено.
Точные грани числовых мн-в
Пусть мн-во Х ограничено сверху, если это мн-во содержит макс число, т.е. наименьшую из своих верхних граней, то это число назся макс мн-ва Х и обозначается Х*=maxX. Если мн-во содержит мин число Х* , то оно min мн-ва Х
Пример Х=[0,1) то max[0,1) не . min [0,1)=0
Число Х* наз-ся точной верхн. гранью, мн-ва Х, если во-первых оно явл. верхн. гранью этого мн-ва, а во-вторых при сколь угодном уменьшении Х* получ. число перестает быть верх. гранью мн-ва.
Верхн. грань – supX=x*, а нижн. грань infX=x*
Теорема. Любое непустое ограниченное сверху (снизу) числ. мн-во имеет точную верх(ниж) грань.
Таким образом у огран. мн-ва обе грани , док-во основано на непрерывности мн-ва действит. чисел.
3. Числовые последовательности
Если для каждого нат. числа n определено некоторое правило сопоставляющее ему число xn, то мн-во чисел х1,х2, … ,хn, … наз-ся числовой последовательностью и обозначается {xn}, причем числа образующие данную посл-ть наз-ся ее эл-ми, а эл-т хn общим эл-том посл-ти .
!Порядок следования эл-тов оч. важен, перестановка хотя бы 2-х эл-тов приводит к др. посл-ти.
Основные способы задан. посл-ти:
а) явный, когда предъявляется ф-ла позволяющая по заданному n вычислить любой эл-т n, т.е. xn=f(n), где f- некоторая ф-ция нат. эл-та.
б) неявный, при котором задается некоторое рекуррентное отношение и несколько первых членов посл-ти.
Пример:
а) xn=5n x1=5, x2=10
б) x1=-2 xn=4n-1 –3, n=2,3… х2=-11, х3=-47
Ограниченные последовательности(ОП)
Посл-ть {xn} наз-ся огран. сверху(снизу), если найдется какое-нибудь число {xn} M(m) xnM n (xnm n) посл-ть наз-ся огранич., если она огранич. сверху и снизу.
Посл-ть {xn} наз-ся неогранич., если для любого полного числа А сущ-ет эл-т хn этой посл-ти, удовлетворяющий неравенству xn>А.
4. Сходящиеся и расходящиеся посл-ти
Большое внимание уд-ся выяснению вопроса: обладает ли данная посл-ть сл-щим св-вом (сходимости) при неогранич. Возрастании номеров посл-ти эл-ты посл-ти сколь угодно близко приближаются к некоторому числу а или же этого св-ва нет.
Опр Если для любого >0 найдется такой номер N, для любого n >N:xn-a<
Все посл-ти имеющие предел наз-ся сходящимися, а не имеющее его наз-ся расходящимися.
Связь сходящихся посл-тей и б/м.
Дает сл. теорему
Теорема Для того чтобы посл-ть xn имела пределом число а необходимо, чтобы эл-ты этой посл-ти можно было представить в виде xn=a+n, где посл-ть {n}0, т.е. является б/м.
Док-во
а) Допустим, что xna и укажем посл-ть n удовл. равенству xn=a+n. Для этого просто положим n=xn-a, тогда при nxn-a равно растоянию от xn до а 0 => n б/м и из равенства преобразования определяю n получаем xn=a+n.
Свойство б/м
Если {xn},{yn}- любые посл-ти, то их сумма {xn+yn}, это есть пос-ть с общим членом xn+yn. Аналогично с разностью, частным и умножением.
Т-ма о св-вах б/м
а) {xn}и{yn}-б/м пос-ти, б/м
1) их сумма, разность и произведение являются б/м
2) Произведение любой огранич. посл-ти на б/м являются б/м
!О частном не говорят, т.е. частное б/м может не быть б/м.
Посл-ть {xn} явл. б/б, если для любого числа с>0 сущ-ет номер N для всех номеров n>N xn>c.
!Понятие б/б не совпадает с неограниченной: посл-ть может быть неогранич., но не является б/б.
Пример 1,1/2,3,1/4,5,1/6,7… явл. неогранич., т.е. принимает сколь угодно большие по модулю значения, однако в ней имеются эл-ты со сколь угодно большими номерами принимающие дробные знач. и сколь угодно малые по модулю.
Св-ва сходящихся посл-тей
Теорема «Об единственности пределов»
Если посл-ть xn сходится, то она имеет единственный предел.
Док-во (от противного)
{xn} имеет два разл. Предела a и b, аb. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса = (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.
Теорема «Сходящаяся посл-ть ограничена»
Пусть
посл-ть {xn}а
>о N:n>Nxn-a<
эквивалентна
а-
Теорема «Об арифметических дейсьвиях»
Пусть посл-ть {xn}a,{yn}b тогда арифметические операции с этими посл-тями приводят к посл-тям также имеющие пределы, причем:
а) предел lim(n)(xnyn)=ab
б) предел lim(n)(xnyn)=ab
в) предел lim(n)(xn/yn)=a/b, b0
Док-во:
а)xnyn=(а+n)(b+n)=(ab)+(nn) Правая часть полученная в разности представляет сумму числа a+b б/м посл-тью, поэтому стоящая в левой части xn+yn имеет предел равный ab. Аналогично др. св-ва.
б) xnyn=(а+n)(b+n)=ab+nb+an+nn
nb – это произведение const на б/м
аn0, nn0, как произведение б/м.
=> поэтому в правой части стоит сумма числа аb+ б/м посл-ть. По т-ме О связи сходящихся посл-тей в б/м посл-ти в правой части xnyn сводится к ab
Практический вывод состоит в том, что нахожд. пределов посл-тей заданных сл. выражениями можно сводить к более простым задачам вычисления lim от составляющих этого выр-ния
Посл-ть
{xn}
наз-ся возр.,
если x1<…
неубывающей,
если x1x2…xnxn+1…;
убывающей,
если x1>x2>…>xn>xn+1>…;
невозр., если
x1x2…xnxn+1…
Все такие
посл-ти наз-ся
монотонными.
Возр. и убыв.
наз-ся строго
монотонными
Всякая
монотонная
посл-ть явл-ся
сходящейся,
т.е. имеет пределы.
Р-рим
числ. посл-ть
с общим членом
xn=(1+1/n)^n
(в степени n)(1) .
Оказывается,
что посл-ть
(1)
монотонно
возр-ет,
ограничена
сверху и сл-но
явл-ся сходящейся,
предел этой
пос-ти наз-ся
экспонентой
и обозначается
символом е2,7128…
Док-ть
сходимость
посл-ти (1)
Для док-ва
введем вспом-ю
ф-цию y=(1+x)^1/x,
x>0
Ясно что при
знач. x=1,1/2,1/3,…,1/n,…
значение ф-ции
y
совпадает
с соответствующими
эл-ми (1).
Док-м
что ф-ция у
монотонно
убывает и огран.
сверху =>
монотонное
возр. посл-ти
(1) и ограниченность
ее сверх. Поскольку
lg
x
явл-ся монотонно
возр., но монотонное
убыв. ф-ции у
и ее огранич.
сверху эквивалентны
том, что ф-ция
lgy,
которая равняется
1/хlg(1+x)
(2) имеет
те же самые
св-ва, т.е. 0
tg1=(lg(1+x1))/x1
1>2=>tg1>tg2
tg2=(lg(1+x2))/x2
Поскольку
1>2,
то tg1>tg2,
а это
равносильно
равенству
(3). Поскольку
y>lg(1+x)
x>0
=> kx>
>lg(1+x)
x>0
Принимая
во внимания
ф-ции у с пос-ть
xn
приходим
к нужному
утверждению.
Число е явл-ся
неизбежным
спутником
динамических
процессов:
почти всегда
показатели
изменяющиеся
во времени
характеризующие
такие процессы
зависят от
времени через
экспонициальную
ф-цию y=e^x
и ее
модификации.
Пр-р: если
ставка сл-ных
% равна r
и инвестор
положил в банк
первоначальный
вклад равный
Р причем % начисляются
m
раз в год (r-
годовая
ставка) тогда
через n-
лет наращенная
сумма нач-ся
по ф-ле сл. % при
m
кратном
их начислению.
Sn=P(1+r/m)^mn
(5) Предположим
теперь % нач-ся
непрерывным
образом, т.е.
число периодов
нач-ния неограничено
ув-ся. Мат-ки
это соотв-ет
тому, что выражение
(5) надо р-равать,
как общий член
посл-ти Xm,
а непрерывному
нач-нию соот-ет
наращенная
ф-ция lim(n)P(1+r/m)^mn=Pe^rn
Lg(e)x
имеет
спец. Обозначение
lnx.
Пусть
на числовой
прямой задана
посл-ть отрезков
[a1,b1],[a2,b2],…,[an,bn],…
Причем
эти отрезки
удовл-ют сл.
усл.:
1) каждый
посл-щий вложен
в предыдущий,
т.е. [an+1,bn+1][an,bn],
n=1,2,…;
2) Длины
отрезков 0
с ростом n,
т.е. lim(n)(bn-an)=0.
Посл-ть с указанными
св-вами наз-ют
вложенными.
Теорема
Любая
посл-ть вложенных
отрезков содержит
единную т-ку
с принадлежащую
всем отрезкам
посл-ти одновременно,
с общая точка
всех отрезков
к которой они
стягиваются.
Док-во
{an}-посл-ть
левых концов
отрезков явл.
монотонно не
убывающей и
ограниченной
сверху числом
b1.
{bn}-посл-ть
правых концов
монотонно не
возрастающей,
поэтому эти
посл-ти явл.
сходящимися,
т.е. сущ-ют числа
с1=lim(n)an
и с2=lim(n)bn
=> c1=c2 => c - их
общее значение.
Действительно
имеет предел
lim(n)(bn-an)=
lim(n)(bn)-
lim(n)(an)
в силу условия
2) o= lim(n)(bn-an)=с2-с1=>
с1=с2=с
Ясно
что т. с общая
для всех отрезков,
поскольку n
ancbn.
Теперь докажем
что она одна.
Допустим
что
другая с‘ к
которой стягиваются
все отрезки.
Если взять
любые не пересекающиеся
отрезки с и
с‘, то с одной
стороны весь
«хвост» посл-тей
{an},{bn}
должен
нах-ся в окрестностях
т-ки с‘‘(т.к. an
и bn
сходятся
к с
и с‘ одновременно).
Противоречие
док-ет т-му.
Т-ма.
Любая пос-ть
вложенных
отрезков содержит
единств. т-ку
свсем
отрезкам посл-ти
одновременно,
к которой они
стягиваются.
Док-во.
{an}
пос-ть левых
концов явл.
монотонно
неубыв. И огран.
свеху числом
b1;
посл-ть правых
концов {bn}
монотонно не
возр. и ограничена
снизу а1, поэтому
эти посл-ти
сходящ., т.е.
числа c1=lim(n)an
и
c2=lim(n)bn.
Докажем
что с1=с2 и сл-но
их общая знач.
может обозначить
через с. Действ.
имеется предел
lim(n)(bn-an)=
lim(n)bn
lim(n)an=c2-c1=c
ясно
что с общая
для всех отрезков
поскольку
для
n ancbn.
Осталось доказать
единство данной
т-ки (от противного).
Допустим есть
c‘c
к которой
стягиваются
все отрезки.
Если взять
любые пределы
окр. точек с
и с‘, то с одной
стороны весь
«хвост» {an},
{bn}, должен нах-ся
в окрестности
т-ки
с, а др. в с‘, т.к.
an и
bn
c и
c‘ одновр. Противореч.
док-ет т-му.
Если
задано правило
по которому
каждому значению
перем. Величины
х из мн-ва Х
ставится
соответствие
1 значению перем.
У то в этом случае
говорят, что
задана ф-ция
1-й переменной.
Y=f(x); x
–аргумент
независ. перемен.,
y-
зав. пер.
X=Df=D(f)
y={y;y=f(x),xX}
x1X1,
y1=f(x1)
1)
аналит. способ;
2)Табличный
способ;
3) Графический
способ;
4)Min и
max ф-ции:
ф-ция f(x)
ограничена,
если огран.
ее мн-во знач
У, т.е.
m,M:
mf(x)M
xX
mf(x)
xX
=> огр.
сн.; f(x)M,
xX=>
огр.
св.
Обратные
ф-ции
Если
задано правило
по которому
каждому значению
yY
ставится в
соответствие
ед. знач. х, причем
y=f(x),
то в
этом случае
говорят, что
на мн-ве Y
определена
ф-ция обратная
ф-ции f(x)
и обозначают
такую ф-цию
x=f^-1(y).
Монотонные
посл-ти ограничены
с одной стороны,
по крайней
мере. Неубывающие
ограничены
снизу, например
1 членом, а не
возрастыющие
ограничены
сверху.
Теорема
«О сходимости
монотон. посл-ти»
Док-во
Пусть
посл-ть {xn}
монотонно
возр. и ограничена
сверху. X
– все мн-во чисел
которое принимает
эл-т этой посл-ти
согласно усл.
Теоремы это
мн-во огранич.,
поэтому по
соотв. Теореме
оно имеет конечную
точную верх.
грань supX
xnsupX
(обозначим
supX через х*). Т.к.
х* точная верх.
грань, то xnx*
n.
>0
вып-ся
нер-во
xm(пусть
m-
это n
с
крышкой):xm>x*-
при
n>m => из
указанных
2-х неравенств
получаем второе
неравенство
x*-xnx*+
при
n>m
эквивалентно
xn-x*<
при
n>m.
Это означает,
что x*
явл.
пределом посл-ти.
Принцип
вложенных
отрезков
Принцип
вложенных
отрезков
7.Ф-ции
одной переменной
Предел ф-ции в точке
y=f(x) X
опр. {xn} X, xnx0
f(xn)A,=> f(x) в т. x0 (при , xnx0) предел = А
А=lim(xx0)f(x) или f(x)A при xx0
Т-ка x0 может и мн-ву Х.
Свойства предела ф-ции в точке
1) Если предел в т-ке сущ-ет, то он единственный
2) Если в тке х0 предел ф-ции f(x) lim(xx0)f(x)=A
lim(xx0)g(x)B=> то тогда в этой т-ке предел суммы, разности, произведения и частного. Отделение этих 2-х ф-ций.
а) lim(xx0)(f(x)g(x))=AB
б) lim(xx0)(f(x)g(x))=AB
в) lim(xx0)(f(x):g(x))=A/B
г) lim(xx0)C=C
д) lim(xx0)Cf(x)=CA
Док-во xnx0, lim(xx0)f(x)=A по опр. f(xn)A {f(xn)}
Односторонние пределы ф-ции в т-ке:
Опр. А - предел ф-ции f(x) справа от точки х0, если f(x)A при хх0, и x>x0
Формально это означает, что для любой посл-ти {xn}x0, вып-ся условие xn>x0, f(x)A. Обозначим f(x0+0) и f(x0+) lim(xx0+0)f(x)
И также с минусами.
Признак предела
Т-ма Для того чтобы f(x) имела предел в т-ке х0 необх., тогда в этой т-ке ф-ция f имеет совпадающ. Между собой одностор. предел (f(x0+)=f(x0-) (1), которые равны пределу ф-ции.
Док-во. f(x) имеет в т-ке х0 предел А, тогда f(x)A независимо от того приближается ли х к х0 по значению больше х0 или меньше это означает равенство (1)
Предел ф-ции в т-ке
Число А наз-ся пределом ф-ции в т-ке х0 если >0 найдется такое число В>0, для всех х отличных от х0 и (х-х0)<0 должно f(x)-A<
>0 из х-х0< должно быть
Пусть f(x)-x0<, если =, то х-х0< => f(x)-x0<
Свойства пределов. Непрерывность ф-ции.
Ф-ция f(x) непрерывна в т-ке х0 если предельное значение в этой т-ке равно самому знач. в этой точке.
Предел и непрерывность функции
Пусть ф-ция f(x) определена на некотором пр-ке Х* и пусть точка х0Х или х0Х.
Опр. Число А наз-ся пределом ф-ции f(x) в точке х=х0, если для >0 >0 такое, что для всех хХ, хх0, удовлетвор. неравенству х-х0<, выполняется неравенство f(x)-A<.
Пример Используя определение, док-ть что ф-ция f(x)=C(C-некоторое число) в точке х=х0(х0-любое число) имеет предел, равный С, т.е. lim (xx0)C=C
Возьмем любое >0. Тогда для любого числа >0 выполняется треюуемое неравенство f(x)-C=C-C=0<, => lim(xx0)C=C
Свойства пределов. Непрерывность ф-ции.
Теорема. Пусть ф-ции f(x) и g(x) имеют в т-ке х0 пределы В и С. Тогда ф-ции f(x)g(x),f(x)g(x) и f(x)/g(x) (при С0) имеют в т-ке х0 пределы, равные соответственно ВС, ВС, В/С, т.е. lim[f(x)g(x)]= BC, lim[f(x)g(x)]= BC, lim[f(x)/g(x)]= B/C
Теорема также верна если х0 явл. , ,
Опр. Ф-ция f(x) наз-ся непрерыной в точке х=х0, если предел ф-ции и ее значение в этой точке равны, т.е. lim(xx0)f(x)=f(x0)
Теорема Пусть ф-ции f(x) и g(x) непрерывны в т-ке х0. Тогда ф-ции f(x)g(x), f(x)g(x) и f(x)/g(x) также непрерывны в этой т-ке.
10. Предел. Односторонний предел.
Опр.Числом А наз-ся предел f(x) в т-ке х0, если для любой окрестности А окрестность (х0):xокрестности (x0) выполняется условие f(x)окрестности.
Теорема Все определения предела эквивалентны между собой.
Опр. Число А называется пределом ф-ции f(x) справа от т.х0(правым предело f(x0)) если f(x)A при хх0, х>x0
Формально это означает, что для любой посл-ти сходящейся к х0 при xn>x0 выполняется условие f(xn)A
Запись: f(x0+o), f(x0+ ). lim(xx0+o)f(x) где запись xx0+o как раз означает стремление к х0 по мн-ву значений >чем х0.
Опр. Предел слева аналогично и исп-ся запись f(x0-o);f(x0-)
Теорема. Для того чтобы ф-ция f(x) имела предел в точке х0 необходимо и достаточно когда в этой т-ке ф-ция имеет совпадающие между собой одностороние пределы (f(x0+)=f(x0-)) значение которые равны пределу ф-ции, т.е. f(x0+)=
f(x0-)=lim(xx0)f(x)=A
Док-во
а) допустим ф-ция имеет в точке х0 предел равный А, тогда f(x) А независимо от того, приближается ли х к х0 по значению > x0 или <, а это означает равенство 1.
б) пусть односторонние пределы сущ-ют и равны f(x0+)=f(x0-) докажем, что просто предел. Возьмем произвольную {xn}х0 разобьем если это необходимо эту последовательность на две подпоследовательности.
1. члены которые нах-ся слева от х0 {x‘n};
2. члены которые нах-ся справа от х0 {х‘‘n};
x’nx0-o x’’nx0+o, т.к. односторонние пределы и равны, то f(x‘n)A и f(x‘‘n)A поэтому посл-ть значений ф-ций {f(xn)} которая также след. справа:
1){f(x‘n)} и {f(x‘‘n)} имеет f(xn)A на основании связи между сходимостью последовательностей
11. Пределы ф-ции на бесконечности
Они нужны для исследования поведения ф-ции на переферии.
Опр. ф-ция f(x) имеет предел число А при x+ если {xn} которая к + соответствующая ей последовательность {f(xn)}A в этом случае мы пишем lim(x+)f(x)=A. Совершенно аналогично с -.
Опр. Будем говорить что ф-ция f(x) имеет пределом число А при x {f(xn)} сходится к А
Бесконечные пределы ф-ции
Вводятся как удобные соглашения в случае, когда конечные пределы не -ют.
Р-рим на премере: lim(xo+)(1/x)
Очевидно не сущ-ет, т.к. для {xn}+о посл-ть {f(xn)}={1/xn}, а числ. посл-ть сводятся к +.
Поэтому можно записать lim(xo+)1/x=+ что говорит о неограниченных возрастаниях предела ф-ции при приближении к 0.
Аналогично с -.
Более того символы + и - употребляются в качестве предела ф-ции в данной т-ке лишь условно и означают например, что если {xn}x0 то {f(xn)},
12. Два замечательных предела
1) lim(x0)sin/x=1
2) Явл. обобщением известного предела о посл-ти. Справедливо сл. предельное соотношение:
lim(n)(1+1/n)^n=e (1)
lim(n0)(1+x)^1/x=e (2)
t=1/x => при х0 t из предела (2) => lim(x) (1+1/x)^x=e (3)
Док-во
1)x+
n x:n=[x] => nx
Посколько при ув-нии основания и степени у показательной ф-ции, ф-ция возрастает, то можно записать новое неравенство (1/(n+1))^n(1+1/n)^x (1+1/n)^(n+1) (4)
Рассмотрим пос-ти стоящие справа и слева. Покажем что их предел число е. Заметим (х+, n)
lim(n)(1+1/(n+1))=lim(n)(1+1/(n+1))^n+1-1= lim(n)(1+1/(n+1))^n+1lim(n)1/(1+1/(n+1))=e
lim(n)(1+1/n)^n+1= lim(n)(1+1/n)^n lim(n)(1+1/n)=e1=e
2) x-. Сведем эту ситуацию к пред. Случаю путем замены переменной y=-x => y+, при x-.
lim(x-)(1+1/x)^x=lim(y+)(1-1/y)^-y= lim(y+)((y-1)/y)^y=lim(y+)(1+1/(y-1))^y=e
3) Пусть x произвольным образом это означает при любом любом выборе посл-ти xn сходящихся к мы должны иметь в силу (3) соотношение lim(x)(1+1/xn)^xn=e (5)
Условие 5~3, т.е расшифровка 3 на языке посл-ти. Выделим из посл-ти xn 2 подпосл-ти: {x‘n}+,
{x‘‘n}-. Для каждой посл-ти по доказанному в п.1 и п.2 справедливо предельное соотношение 5 если заменить xnx‘nx‘‘n. По т-ме о связи
13. Б/м ф-ции и их сравнения
Опр. Ф-ция (х) наз-ся б/м если ее предел в этой т-ке равен 0 из этого определения вытекает следующее св-во б/м ф-ций:
а) Алгебраическая сумма и произведение б/м ф-ций есть б/м ф-ции.
б) Произведение б/м ф-ции на ограниченную ф-цию есть б/м ф-ция, т.е. если (х)0 при хх0, а f(x) определена и ограничена ( С:(х)С)=> (х)(х)0 при хх0
Для того чтобы различать б/м по их скорости стремления к 0 вводят сл. понятие:
1) Если отношение 2-х б/м (х)/(х)0 при хх0 то говорят что б/м имеет более высокий порядок малости чем .
2) Если (х)/(х)A0 при хх0 (A-число), то (х) и (х) наз-ся б/м одного порядка.
3) если (х)/(х)1 , то (х) и (х) наз-ся эквивалентными б/м ((х)~(х)), при хх0.
4) Если (х)/^n(х)А0, то (х) наз-ся б/м n-ного порядка относительно (х).
Аналогичные определения для случаев: хх0-, хх0+, х-, х+ и х.
14. Непрерывные ф-ции. Непрерывность.
Опр. f(x) непрерывны Х0 и при этом ее предел в этой т-ке сущ-ет и равен знач. ф-ции в этой т-ке, т.е. lim(xx0)f(x)=f(x0)-непрерывность ф-ции в т-ке. Из определения вытекает что в случае непрерывности ф-ции в данной т-ке вычитание пределов сводится к вычит. знач. ф-ции в данной т-ке. Равенство lim(xx0)x=x0 (1‘). Т.е знак предела у непрерывной ф-ции можно вносить в аргумент ф-ции. Геометрически непрерывность ф-ции в т-ке х0 означает что ее график в этой т-ке не имеет разрыва. Если обозначить через у приращение ф-ции, т.е. у=f(x0+x)-f(x0) (приращение ф-ции в т. х0). «» - символ приращения.
Приращение аргумента в т-ке х0 это соответствует тому, что текущая т. х, то условие непрерывности в т-ке х0 записывается сл. образом lim(x0)y=0~ у0 (1‘‘). Если в т-ке х0 ф-ция непрерывна, то приращение ф-ции 0 приращение аргумента.
f(x) непрерывна в т-ке х0 <> y0 при х0.
Если понятие предела приводит к понятию непр. Ф-ции то понятие одностороннего предела приводит к понятию односторонней непр. точки.
Опр. Если f(x) имеет предел справа в т-ке х0(=f(x0+)) и этот предел равен значению ф-ции ф-ции в т-ке х0, т.е. f(x0+)=lim(xx0,x>x0)f(x)=f(x0), то ф-ция f(x) наз-ся непр. справа в т-ке х0.
Аналогично
при вып-нии
усл. f(x0-)=lim(xx0,
x
Ясно
что справедлива
сл.теорема
вытекающая
из связи односторонних
пределов ф-ция
f(x)
непр. в т-ке х
тогда, когда
она непр. в этой
т-ке, как справа,
так и слева.
f(x0-)=f(x0+)=f(x0)
Опр.
Ф-ция f(x)
непрерывна
на некотором
пр-ке D,
если в каждой
т-ке этого пр-ка
при этом, если
пр-ток D
содержит граничную
т-ку, то будем
подразумевать
соотв. одностор.
непр. ф-ции в
этой т-ке.
Пример
Р-рим
степенную
производст.
ф-цию
Q=f(k)=k^1/2
Q-объем
выпуска продукции,
к – объем капитала.
D(f)=R+=>f(0)=0
и очевидно
f(0+)
и равно
0 =>
что данная
ф-ция непр. на
своей обл.
опр-ния. Большинство
ф-ций исп-мых
в эк-ке непр.
Например непр.
ф-ции означает,
что при малом
изменении
капитала мало
будет меняться
и выпуск пр-ции
(Q0
при
k0).
Ф-ции которые
не явл. непр.
наз-ют разрывными
соотв. т-ки в
которых ф-ция
не явл. непр.
наз-ся
т-кой разрыва
Классификация т-ки разрыва Непр. ф-ции на пр-кеТеорема ВЕЙЕРШТРАССА |
Дифференцирование ф-ций Пр-ные и дифференциалы выс. Порядков. Теорема Ферма Теорема Ролля Теорема Логранджа Теорема Коши Правило Лопиталя |
Выпуклые и вогнутые ф-ции Т-ки перегиба Выпуклость и вогнутость. Б/б пол-тиГладкая ф-ция Эластичность ф-ций |
Применение 1й пр-ной в исслед. ф-цийТ-ма Ферма Т-ма Коши Интервалы монотонности ф-цииТ-ма Логранджа. Т-ма Ролля Т-ма Тейлора Т-ма Коши Правило Лопиталя.Производная обратной ф-ции |
Теорема Больцано-Вейерштрасса Теорема Больцано-Коши Теорема Вейерштрасса |
15. Классификация т-ки разрыва Все т-ки р-рыва делятся на 3 вида: т. устранимого р-рыва; точки р-рыва 1-го , и 2-го рода. а) если в т-ке х0 оба односторонних предела, которые совпадают между собой f(x0+)= f(x0-), но f(x0), то такая т-ка наз-ся точкой устранимого р-рыва. Если х0 т-ка устранимого р-рыва, то можно перераспределить ф-цию f так чтобы она стала непр. в т-ке х0. Если по ф-ции f построить новую ф-цию положив для нее знач. f(x0)= f(x0-)=f(x0+) и сохранить знач. в др. т-ках, то получим исправл. f. б) если в т-ке х0 оба 1-стороних предела f(x0), которые не равны между собой f(x0+)f(x0-), то х0 наз-ся т-кой р-рыва первого рода. в) если в т-ке х0 хотя бы 1 из односторонних пределов ф-ции не или бесконечен, то х0 наз-ся т-кой р-рыва 2-го рода. При исслед. Ф-ции на непр. классификации возможных т-к р-рыва нужно применять во внимание сл. замечания: 1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния. 2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр. 3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва: график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги. I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти)
Док-во
использует
опр-ние на
языке
и .
Если f
непр.
в т-ке х0 то взяв
любое >0
можно найти
>0
f(x)-f(x0)<
при
х-х0<
~ f(x0)- II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)0 то окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0. III)Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке [a,b] и f(a)=A, f(b)=B причем AB => C(A,B) c(a,b):f(c)=C f(c)=f(c‘)=f(c‘‘). IV)Теорема о прохожд. непр. ф-ции через 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то т-ка с(a,b). Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана. Пусть f(d)0 [a,d] или [d,b] ф-ция f принимает значение разных знаков. Пусть для определ-ти [a,d] обозначим через [a1,b1]. Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку [a2,d2] продолжая этот процесс мы получим посл-ть вложения отрезков [a1,b1]>[a2,b2] длинна которых (a-b)/2^n0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)0 то по св-ву сохр. знаков в некоторой окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки [an,bn] с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков. Непр. ф-ции на пр-кеf непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)0 => f непр. на [a,b] и f(x)f(b)=0 (f(x)f(b)>0 в окр-ти х0) => с(a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны. Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. с>0:f(x)c x(a,b). Т-ма 2( о экстр. непр. ф-ции на отр.). Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. т-ка max X*:f(x*)f(x) x[a,b], т-ка min X_:f(x_)f(x) x[a,b]. Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки Контрпример 1. f(x)=1/2 на (0;1] f – неогр. на (0;1] хотя и непрерывны. Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(x(0;1))x=0, но т-ки x_(0;1):f(x_)=0, т-ки x*, хотя sup(x(0;1))x=1 Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр. Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0.
Док-во
т-мы 2.
Обозначим
E(f)
– множиством
значений ф-ии
f(x)
на
отр. [a,b]
по предыд. т-ме
это мн-во огран.
и сл-но имеет
конечные точные
грани supE(f)=supf(x)=(при
х[a,b])=M(<).
InfE(f)= inff(x)=m(m>-).
Для опр. докажем
[a,b]
f(x)
достигает
макс. на [a,b],
т.е.
х*:f(x)=M. Допустим
противное,
такой т-ки не
и сл-но f(x)
!0 Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C” Следствие: если f(x) непр. [a,b]тогда она принимает все знач. заключ. Между ее max и min, т.е. E(f)=[m;M], где m и M –max и min f на отрезке. |
16. Дифференцирование ф-ций Центральная идея диффер. ф-ций явл-ся изучение гладких ф-ций (без изломов и р-рывов кривые) с помощью понятия пр-ной или с помощью линейных ф-ций y=kx+b обладает простейшими наглядн. ф-циями; у=k‘ => k>0 то у возр. при всех х, k<0-то у убыв. при всех х, k=0 – ф-ция постоянна Определение пр-ной1) Пусть ф-ция y=f(x) определена по крайней мере в окр-тях т-ки х0, таким приращения х эл-нт. Составим соотв. ему приращения ф-ции т-ки х0. y=f(x0)=f(x0+x)-f(x0) Образуем разностное отношение y/x=f(x0)/x (1) (это разностное отношение явл. ф-цией х, т.к. х0-фиксирована, причем при х0 мы имеем дело с неопр. 0/0). Опр. Пр-ной ф-ции y=f(x) наз-ся предел разностного отношения 1 (при условии если он ), когда х0. Производная это предел отношения приращения в данной т-ке к приращению аргумента при усл., что посл-ть к 0. Эта производная обозначается через df(x0)/dx или f‘(x0), у‘ (если данная т-ка х0 подразумевается или же речь идет о пр-ной в любой текущей т-ке х. Итак согласно определению f‘(x0)=lim(x0) (f(x0+x)-f(x0))/x (2) Если ф-ция f(x) имеет в т-ке х0 пр-ную, т.е. предел в правой части (2) , то говорят что f(x) дифференц. в т-ке х0. 2) Непрерывность и дифференцируемость Т-ма. Если ф-ция f(x) дифференц. в т-ке х0 то она непрерывна в этой т-ке, причем имеет место разложения f в т-ке х0 f(x0)=f(x0+x)-f(x0)= f‘(x0)x+(x)x (3), где (x)-б/м ф-ия при х0 Док-во. Заметим, что разложение (3) верно, что из него сразу следует что при х0 f(x0)0, => в т-ке х0 ф-ция непр. Поэтому осталось док-ть рав-во (3). Если пр-ная то из определения (2) и связи предела с б/м =>, что б/м ф-ция (х) такая что f(x0)/x=f‘(x0)+(x) отсюда рав-во (3) пол-ся умножением на x. Примеры. 1)Пр-ная постоянная и ф-ция равна 0, т.е. y=c=const x, тогда y‘=0 для х. В этом случае y/x числитель всегда равен пустому мн-ву, сл-но это отношение равно 0, => значит эго отн-ние = 0. 2)Пр-ная степенной ф-ции, у=х^k, y‘=kx^(k-1) kN. Док-м для к=0 исходя из опр-ния пр-ной. Возьмем т-ку х и дадим приращение х составим разностное отношение у/х=(х+х)^2-x^2/x=2х+ х => lim(x0)y/x=2x=y‘. В дейст-ти док-ная ф-ла р-раняется для любых к. 3)Пр-ная экспон-ной ф-ции, у=е^x => y‘=e^x. В данном случае y/x=(e^x+x-e^x)/x=e^x(e^x-1)/ x. Одеако предел дробного сомножителя = 1. 4)y=f(x)=x=(x, x>0;-x,x<0). Ясна что для х0 производная легко нах-ся, причем при y‘=1при x>0 y‘=-1 при x<0. Однако в т-ке x=0 пр-ная не . Причина с геом т-ки зрения явл. невозможность проведения бесисл. мн-во кассат. к гр-ку ф-ции. Все кассат. имеют угол от [-1,+1], а с аналит. т-ки зрения означает что прдел 2 не при x0=0. При x>0 y/x=x/x=1=>lim(x0,x>0)y/x=1 А левый предел разн-го отн-ния будет –1. Т.к. одностор. пред. Не совпадают пр-ная не . В данном случае одностор. пр-ная. Опр. Правой(левой) пр-ной ф-ции в т-ке х0, наз-ся lim отношения (2) при усл. что х0+(х0-). Из связи вытекает утвержд., если f(x) дифференц. в т-ке х0, то ее одностор. пр-ная также и не совпадает f‘(x0-) и f‘(x0+) обратно для пр-ной f‘(x0) необходимо, чтобы прав. и лев. пр-ные совпад. между собой. В этом случае они не совпад. 17. Пр-ные и дифференциалы выс. Порядков. Пр-ная f‘(x) – первого порядка; f‘‘(x) – второго; f‘‘‘(x)-третьего; fn(x)=(f(n-1)(x))‘. Пр-ные начиная со второй наз-ся пр-ными выс. порядка. Дифференциал выс. порядковdy= f‘(x)dx – диф. первого порядка ф-ции f(x) и обозначается d^2y, т.е. d^2y=f‘‘(x)(dx)^2. Диф. d(d^(n-1)y) от диф. d^(n-1)y наз-ся диф. n-ного порядка ф-ции f(x) и обознач. d^ny. Теорема Ферма. Пусть ф-ция f(x) определена на интервале (a,b) и в некоторой т-ке х0 этого интервала имеет наибольшее или наименьшее знач. Тогда если в т-ке х0 пр-ная, то она = 0, f‘(x0)=0. 2)Теорема Ролля. Пусть на отрезке [a,b] определена ф-ция f(x) причем: f(x) непрерывна на [a,b]; f(x) диф. на (a,b); f(a)=f(b). Тогда т-ка с(a,b), в которой f‘(c)=0. 3)Теорема Логранджа. Пусть на отрезке [a,b] определена f(x), причем: f(x) непр. на [a,b]; f(x) диф. на [a,b]. Тогда т-ка c(a,b) такая, что справедлива ф-ла (f(b)-f(a))/b-a= f‘(c). 4)Теорема Коши. Пусть ф-ции f(x) и g(x) непр. на [a,b] и диф. на (a,b). Пусть кроме того, g`(x)0. Тогда т-ка с(a,b) такая, что справедл. ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c). Правило Лопиталя. Раскрытие 0/0. 1-е правило Лопиталя. Если lim(xa)f(x)= lim(xa)g(x), то lim(xa)f(x)/g(x)= lim(xa)f‘(x)/g‘(x), когда предел конечный или бесконечный. Раскрытие /. Второе правило. Если lim(xa)f(x)= lim(xa)g(x)=, то lim(xa)f(x)/g(x)= lim(xa)f‘(x)/g‘(x). Правила верны тогда, когда x,x-,x+,xa-,xa+. Неопред-ти вида 0, -, 0^0, 1^, ^0. Неопр. 0, - сводятся к 0/0 и / путем алгебраических преобразований. А неопр. 0^0, 1^, ^0 с помощью тождества f(x)^g(x)=e^g(x)lnf(x) сводятся к неопр вида 0 |
Выпуклые и вогнутые ф-ции Для хар-ки скорости возр. или убыв. ф-ции, а также крутезны гр-ка ф-ции на участке монотонности вводится понятия вогн. вып-ти ф-ции на интервале, частности на всей числ. приямой. Пр-р. Пусть ф-ция явл-ся пр-ной ф-цией некоторой фирмы, напр. объем вып-ка продукции, а арг. х-числ. раб. силы. Хар-ный график этой ф-ции имеет сл. вид у f(x) возр. для x>0. На инт. От (0,a) ф-ция возр. все быстрее. Его можно р-ривать, как этап образования фирмы вначале которого выпуск растет медленно, поскольку первые рабочие не прошли период адаптации, но с теч. времени эффект привл. доп. раб. рабочих становится все больше, и соотв. ув-ся крутизна графика. На (,a) ф-ция возр. все медл. и гр. становится все более пологой. а – это пороговое знач. числ. раб. силы начиная с которого привл. доп. раб. силы начиная с которого привл. раб. силы дает все меньший эффект в объемке вып-ка. А(х) возр. f‘(x)>0 x0, но на интервале от 0 до а (0;а) f‘(x) возр. в то время как (0;) f‘ убыв., а в т-ке а-max. По критерию монотонности это означает на (0;а) f‘‘(x)0 (f-выпукла), а на (a;) f‘‘(x)0 (f-вогнута). Опр. Пусть f(x) дважды диф. ф-ция на (a,b), тогда: 1)назовем ф-цию f(x) выпуклой(вогн) на интервале (a,b), если 2-я пр-ная не отриц, т.е. f‘‘(x)0 (f‘‘(x)0) на (a,b) 2)Если в пункте 1 вып-ся строгие нер-ва 2-й пр-ной, то ф-ция наз-ся строго выпуклой(вогнутой) на интервале (a,b) Т-ки перегиба Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум. Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны. Выпуклость и вогнутость. Опр. Ф-ция явл. выпуклой (вогнутой) на (a,b) если кассат. к граф-ку ф-ции в любой т-ке интервала, лежит ниже (выше) гр. ф-ции. y=y0+f‘(x0)(x-x0)=f(x0)+f‘(x0)(x-x0) – линейная ф-ция х, который не превосходит f(x) и не меньше f(x) в случае вогнутости неравенства хар-щие выпуклость (вогнутость) через диф. f(x)f(x0)+ f‘(x0)(x-x0) x,x0(a;b) f вогнута на (а,b). Хорда выше (ниже), чем график для вып. ф-ций (вогн.) линейная ф-ция kx+b, в частности постоянна, явл. вып. и вогнутой. Б/б пол-тиПосл-ть {xn} наз-ся б/б, если для пол-ного числа А номер N такой, что при n>N вып-ся нер-во xn>A Возьмем любое число А>0. Из неравенства xn=n>A получаем n>A. Если взять NА, то n>N вып-ся xn>A, т.е. посл-ть {xn} б/б. Замечание. Любая б/б посл-ть явл. неограниченной. Однако неогранич. Посл-ть может и не быть б/б. Например 1,2,1,3,1,…,1,n… не явл. б/б поскольку при А>0 нер-во xn>A не имеет места xn с нечет. номерами. Гладкая ф-цияСл. ф-ция f(x) тоже явл. гладкой, т.е. f‘ и непрерывна причем имеет место сл. ф-ла F‘(x)=f‘((x))‘(x) (4). Используя ф-лу (4) получаем y‘=(lnf(a))‘=f‘(x)/f(x) (5) – логарифмической пр-ной. Правая часть это скорость изменения у (ф-ция f(x)) приходится на ед-цу абсол. значения этого пок-ля поэтому логарифм. Произв. наз-ют темпом прироста показателя y или f(x). Пусть известна динамика изменения цены на некотором интервале, причем P(t) гладкая ф-ция. Что можно назвать темпом роста этой ф-ции, при t=R. Темп ростаприросту. Пр-р y=e^x. Найдем темп прироста. f‘/f=темп прироста=e^x/e^x=. Экспонициальная ф-ция имеет постоянный темп прироста. Эластичность ф-цийОпр. Пусть гладкая ф-ция y=f(x) описывает изменение экономической переменной у от эк. пер. х. Допустим f(x)>0 => имеет смысл лог. пр-ная. Эл-ностью ф-ции f(x) или у наз-ся сл-щая вел-на опред-мая с помощью лог. пр-ной. Ef(x)=xf‘(x)/f(x)=x(lnf(x))‘ (6). Выясним эк. смысл этого показателя для этого заменим в (6) пр-ную ее разностным отношением f(x0)/x и будем иметь Ef(x)x(f(x)/x)/f(x)=(f(x)/f(x))/(x/x). В числителе стоит относит. Прирост ф-ции f в т-ке x, в знаменателе относ. прир. аргумента. => эл-ность ф-ции показывает на сколько % изменяется пок-ль y=f(x) при изменении перем. х на 1%. Эластичность – пок-ль реакции 1-й переменной на изменение другой. Пр-р. р-рим ф-цию спроса от цены, пусть D=f(p)=-aP+b – линейная ф-ция спроса, где а>0. Найдем эластичность спроса по цене. Ed(P)=PD‘/D=P(-a)/(-aP+b)=aP/(aP-b)=> эл-ность линейной ф-ции не постоянна |
Применение 1й пр-ной в исслед. ф-цийВсе применения базируются на опред-нии пр-ной, как предела разностного отношения, а также на сл-щей т-ме. Т-ма Ферма. Если диф. на интервале (a,b) f(x) имеет в т-ке ч0 локальный экстремум, то пр-ная этой ф-ции обращается в 0, т.е. f‘(x0)=0 (8). Это необходимое усл. локал. экстр., но недостаточное. Опр. Все т-ки в которых пр-ная ф-ции f(x) обращается в 0 наз-ся крит. т-ми f(x). Из т-мы Ферма => экстремум надо искать только через крит. т-ки. Т-ма Коши. Пусть ф-ции f(x) и g(x) непрерывны на [a,b] и диф. на (a,b). Пусть кроме того, g‘(x)0, тогда т-ка c(a,b) такая, что справедлива ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c) Интервалы монотонности ф-цииТ-ма. Пусть f(x) диффер. На интервале (a,b), тогда справедливы сл. утверждения f(x) монотонно возр. (убывает) на интервале (a,b) тогда, когда f‘(x)0 на интервале (a,b) и f‘(x)>0 (f‘(x)<0), то строго возр. (убыв) на (a,b). х интерв. монотонно убывает, касательная имеет тупой угол наклона f‘(x1)<0 для x2 противоположная ситуация. Т-ма Логранджа. Пусть ф-ция f(x) непрер. на отрезке [a,b] и диф. на интервале (a,b), тогда т. х и x+x [a,b] т-ка С лежащая между х и х+х такая что спаведлива ф-ла (f(x+x)-f(x))=f(c)x (7) => при сравнении с ф-лой приращения ф-ций с диф. заметим, что (7) явл. точной ф-лой, однако теперь пр-ная фолжна считаться в некоторой средней т-ке С «алгоритм» выбора которой неизвестен. Крайнее значение (a,b) не запрещены. Придадим ф-ле (7) классический вид => x=a x+x=b+> тогда ф-ла (7)=(f(b)-f(a))/(b-a)=f‘(c) (7‘) – ф-ла конечных приращений Логранджа. (f(b)-f(a))/(b-a)=f‘(c) (1) Док-во сводится к сведению к т-ме Ролля. Р-рим вспом. ф-цию g(x)=f(x)-f(a)-(f(b)-f(a))/(b-a) (x-a) Пусть ф-ция g(x) удовл. всем усл. т-мы Ролля на [a,b] А)Непрерывна на [a,b] Б) Дифференц. на (a,b) В) g(a)=g(b)=0 Все усл. Ролля соблюдены, поэтому т-ка С на (a,b) g‘(c)=0 g‘(c)=f‘(x)-(f(b)-f(a))/(b-a). Ф-ла (1) наз-ся ф-лой конечных приращений. Т-ма Ролля. Пусть ф-ция f(x) удовл. сл. усл. А)Непрерывна на [a,b] Б) Дифференц. на (a,b) В) принимает на коцах отрезков равные значения f(a)=f(b), тогда на (a,b) т-ка такая что f‘(c)=0, т.е. с-крит. т-ка. Док-во. Р-рим сначала, тривиальный случай, f(x) постоянная на [a,b] (f(a)=f(b)), тогда f‘(x)=0 x (a,b), любую т-ку можно взять в кач-ве с. Пусть f const на [a,b], т.к. она непрер. на этом отрезке, то по т-ме Вейерштрасса она достигает своего экстрем. на этом отрезке и max и min. Поскольку f принимает равные знач. в гранич. т-ках, то хотя бы 1- экстр. – max или min обязательно достигается во внутр. т-ке. с(a,b) (в противном случае f=const), то по т-ме Ферма, тогда f‘(c)=0, что и требовалось д-ть. Т-ма Тейлора. «О приближении гладкой ф-ци к полиномам» Опр. Пусть ф-ция f(x) имеет в т-ке а и некоторой ее окрестности пр-ные порядка n+1. Пусть х - любое значение аргумента из указанной окрестности, ха. Тогда между т-ми а и х надутся т-ка такая, что справедлива ф-ла Тейлора. f(x)=f(a)+f‘(a)/1!(x+a)+ f‘‘(a)/2!(x+a)^2+f^(n)(а)/n!+f^(n+1)()/(n+1)!(x-a)^(n+1). Док-во. Сводится к Роллю путем введения вспом. переменной g(x). g(x)=f(x)-f(a)-f‘(x)(x-a)-…-1/n!f^n(x)(x-a)^n-1/(n+1)!(x-a)^n+1. По т-ме Роляя т-ка с из (a,b), такая что g(c)=0 =f^(n+1)(c) Правило Лопиталя. Пусть ф-ция f(x) и g(x) имеет в окр. т-ки х0 пр-ные f‘ и g‘ исключая возможность саму эту т-ку х0. Пусть lim(хх )=lim(xx)g(x)=0 так что f(x)/g(x) при xx0 дает 0/0. lim(xx0)f‘(x)/g‘(x) (4), когда он совпадает с пределом отношения ф-ции lim(xx0)f(x)/g(x)= lim(xx0)f‘(x)/g‘(x) (5) Док-во. Возьмем т-ку х>х0 и рассмотрим на [x0;x] вспом ф-цию арг. t h(t)=f(t)-Ag(t), если t[x0;x], т.к. удовл. этому св-ву в окр-ти т-ки х0, а т-ку х мы считаем достаточно близкой к х0. Ф-ция h непрерывна на [x0;x], поскольку lim(tx0)h(t)=lim(tx0)[f(t)-Ag(t)]=lim(tx0)-A lim(tx0)g(t)=0=h(0)=> непр. t=x0 По т-ме Логранджа (x0,x) c:h‘‘(c)=0 Производная обратной ф-цииТ-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции. Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)0. Пусть у0 – приращение независимой переменной у и х – соответствующее приращение обратной ф-ции x=(y). Напишем тождество: x/y=1:y/x (2) Переходя к пределу в рав-ве (2) при у0 и учитывая, что при этом также х0, получим: lim(y0)x/y=1:lim(x0)y/x => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции. Производная обратной ф-цииТ-ма. Для диф. ф-ции с пр-ной, не равной нулю, пр-ная обратной ф-ции равна обратной обратной величине пр-ной данной ф-ции. Док-во. Пусть ф-ция y=f(x) диф. и y‘x=f‘(x)0. Пусть у0 – приращение независимой переменной у и х – соответствующее приращение обратной ф-ции x=(y). Напишем тождество: x/y=1:y/x (2) Переходя к пределу в рав-ве (2) при у0 и учитывая, что при этом также х0, получим: lim(y0)x/y=1:lim(x0)y/x => x‘y=1/y‘x. Где х‘у – пр-ная обратной ф-ции. |
Теорема Больцано-Вейерштрасса Из любой огран. посл-ти можно выбрать сход. подпосл-ть. Док-во 1. Поскольку посл-ть ограничена, то m и M, такое что mxnM, n. 1=[m,M] – отрезок, в котором лежат все т-ки посл-ти. Разделим его пополам. По крайней мере в одной из половинок будет нах-ся бесконечное число т-к посл-ти. 2 – та половина, где лежит бесконечное число т-к посл-ти. Делим его пополам. По краней мере в одной из половинок отр. 2 нах-ся бесконечное число т-к посл-ти. Эта половина - 3. Делим отрезок 3 … и т.д. получаем посл-ть вложенных отрезков, длинны которых стремятся к 0. Согластно о т-ме о вложенных отрезках, единств. т-ка С, кот. принадл. всем отрезкам 1, какую-либо т-ку n1. В отрезке 2 выбираю т-ку xn2, так чтобы n2>n1. В отрезке 3 … и т.д. В итоге пол-ем посл-ть xnkk. Теорема Больцано-Коши Пусть ф-ция непр-на на отрезке [a,b] и на концах отрезка принимает зн-ния равных знаков, тогда т-ка с (a,b) в которой ф-ция обращается в 0. Док-во
Пусть
Х – мн-во таких
т-к х из отрезка
[a,b],
где f(x)<0.
Мн-во Х не пустое.
Х
[a,b],
значит х ограничено,
поэтому оно
имеет точную
верхнюю грань.
c=supx.
acb
покажем
a Теорема Вейерштрасса Непрерывная ф-ция на отрезке ограничена. Док-во Предположим что ф-ция не ограничена. Возьмем целое пол-ное n, т.к. ф-ция не ограничена, то найдется xn[a,b], такое что f(xn)>n. Имеем посл-ть т-к xn. По т-ме Больцано-Коши из посл-ти xn можно выбрать сходящиюся подпосл-ть xnkx0. По т-ме о предельном переходе к неравенству. axnkb ax0b x0[a,b] Если посл-ть xnk сходится к x0, то f(xnk) будет сходится f(x0) f(xnk)>nk, a nkf(xnk), т.е. f(xnk) б/б посл-ть. С одной стороны f(xnk) стремится к опр. числу, а с др. стороны стремится к , пришли к противоречию, т.к. мы предположим, что ф-ция не ограничена. Значит наше предположение не верно. |