Реферат: Метод расчета скейлинговых констант Фейгенбаума для одномерных дискретных отображений по точкам сверхустойчивых циклов
Антон Никифоров
Напомню для начала некоторые факты из теории
универсальности Митчелла Фейгенбаума. Будем называть непрерывное отображение
отрезка в себя унимодальным, если внутри отрезка имеется точка экстремума и по обе стороны
от неё отображение является строго монотонным (с одной из сторон возрастающим,
с другой убывающим). Условимся далее рассматривать только унимодальные
отображения вида
|
(1) |
Если последовательность {} при данном r состоит из n точек,
такую последовательность будем называть n-циклом, что
=f(
),
=f(
), …,
=f(
) или
. Заметим, что производная порядка n
функции
(n
раз вычисленной функции f(x)) в точке x по правилу дифференцирования сложной
функции равна
.
Точки цикла, удовлетворяющие соотношению
|
(2) |
называются неподвижными.
Величина (так называемый мультипликатор)
определяет устойчивость n-цикла и её принято называть устойчивостью (stability,
[2], p.121). n-цикл называется устойчивым, если
<1.
n-цикл, содержащий в качестве одной из своих точек,
называются сверхустойчивым. Для такого цикла
=0.
Как было продемонстрировано в 1978 году М.Фейгенбаумом
[4], значения параметра , при которых число устойчивых
периодических точек удваивается и становится равным
, удовлетворяют масштабному
соотношению, или как говорят имеют скейлинг:
|
(3) |
Данное соотношение встречается также и в следующей записи:
|
(3.1) |
Рис.1 |
Или в таком виде:
Расстояния
Константы Фейгенбаума имеют значения |
Сказку о том, как Фейгенбаум сидел в тени деревьев и
вычислял их на своём калькуляторе HP-65 с золотистыми кнопочками вы, наверное,
слышали. Это был первый программируемый калькулятор и стоил ни много ни мало аж
400 (четыреста!) долларов. Наивно полагать, что своё удивительное открытие
Фейгенбаум сделал, пользуясь исключительно калькулятором: все-таки в то время
он работал в Лос-Аламосе, а у военных всегда были и будут самые мощные
компьютеры в мире, однако открытие действительно было чудесным - какие бы
унимодальные отображения мы не рассматривали, скейлинг для них (т.е.
"волшебные" числа и
) будет тем же самым.
Алгоритм
Интересно, что точки также можно использовать для расчета
, этим факт
мы и будем использовать в дальнейшем. Обратим внимание, что в точках
мультипликатор
всегда равен
нулю, что автоматически означает устойчивость этих циклов:
(a) | Например, для цикла периода два: | |
|
||
|
||
|
(5.1) |
(б) | Цикл периода четыре: | |
|
||
|
||
|
(5.2) |
Для произвольных же -циклов справедливо выражение:
|
(6) |
Уравнение (5.3) легко решается относительно параметра , например, с
помощью метода последовательных итераций Ньютона:
|
(6.1) |
Здесь i - номер итерации. Таким образом, весь процесс
вычисления, скажем, константы сводится к нахождению таких значений
параметра R, при которых бифуркационная диаграмма пересекает линию
. Для этого
необходимо решить уравнение (6), проитерировав его
раз.
НА ВХОД ПОДАЕМ:
Начинаем итерировать функцию f cо следующего значения:
Итерируем производную функции начиная с
Начальные приближения двух значений параметра R: ,
Разумное начальное приближение для постоянной :
НА ВЫХОДЕ ПОЛУЧАЕМ:
А весь процесс может быть описан следующими выражениями:
, n=2,3,4,…
, i=0,1,2,…
Рассмотрим на примерах как выглядят непосредственные вычислительные формулы.
ПРИМЕР 1:
При данном значении функция f будет зависеть только от
константы r, обозначим эту функцию как . Тогда предыдущее уравнение можно
будет переписать:
ПРИМЕР 2:
ПРИМЕР 3:
Программу расчета константы вы можете найти здесь. Её легко
модицифировать для расчета постоянной
, что предоставляется проделать
читателю. Результат расчета
в зависимости от шага i приводится
ниже.
i |
|
1 | 6.9032539091... |
2 | 4.7443094689... |
3 | 4.6744478277... |
4 | 4.6707911502... |
5 | 4.6694616483... |
6 | 4.6692658098... |
... | ... |
11 | 4.66920173800930... |
Список литературы
[1] Г.Шустер, "Детерминированный хаос. Введение", М:Мир, 1988
[2] K.Briggs "Feigenbaum Scaling in Discrete Dynamical Systems", PhD thesis, 1997
[3] Е.Б.Вул, Я.Г.Синай, К.М.Ханин, "Универсальность Фейгенбаума и термодинамический формализм", УМН, т.39, вып.3(237), 1984
[4] М.Фейгенбаум, "Универсальность в поведении нелинейных систем", УФН, т.141, вып.2, октябрь 1983
[5] Н.Н.Калиткин, "Численные методы", М:Наука, 1978
[6] Метод Ньютона
Основы проектирования и конструирования | |
Основы проектирования и конструирования Конспект лекций для студентов специальности 060800 "Экономика и управление на предприятии" Составитель ... Моментом силы относительно центра О называется приложенный в О вектор , модуль которого равен произведению модуля силы F на ее плечо h, направленный перпендикулярно плоскости ... Отображение - обратное отображение. |
Раздел: Промышленность, производство Тип: учебное пособие |
Вычислительная математика | |
Содержание Введение Тема 1. Решение задач вычислительными методами. Основные понятия 1.1 Погрешность 1.2 Корректность 1.3 Вычислительные методы Тема 2 ... Заменим в расчетной формуле Ньютона (2.13) производную f '(xn) правой частью приближенного равенства (2.23). Численный метод решения задачи Коши называется сходящимся, если для него R ° 0 при h ° 0. Говорят, что метод имеет p-ый порядок точности, если для погрешности справедлива оценка R ... |
Раздел: Рефераты по математике Тип: учебное пособие |
Проектирование трансляторов | |
ЛЕКЦИЯ 1 СУЩНОСТЬ ПРЕДМЕТА. СОДЕРЖАНИЕ КП. СРОКИ. ОРГАНИЗАЦИЯ РАБОТ. МАТЕМАТИЧЕСКИЙ АППАРАТ. СТРУКТУРНАЯ СХЕМА ТРАНСЛЯТОРА. ПРОХОДЫ ТРАНСЛЯТОРА ... М. Мир 1978 г. Si > Sj ::= Э F ((F: U::=xUkSjy) & Si{-R(Uk)) v |
Раздел: Рефераты по информатике, программированию Тип: реферат |
Рефераты по математике Тип: реферат |