Реферат: Расчёт и проектирование установки для получения жидкого кислорода

Санкт-Петербургский государственный Университет

низкотемпературных и пищевых технологий.

Кафедра криогенной техники.


Курсовой проект

по дисциплине «Установки ожижения и разделения газовых смесей»


Расчёт и проектирование установки

для получения жидкого кислорода.


Работу выполнил

студент 452 группы

Денисов Сергей.

Работу принял

Пахомов О. В.


Санкт – Петербург 2003 год.

Оглавление.

Задание на расчёт…………………………………………………………………..3

  1. Выбор типа установки и его обоснование……………………………………3

  2. Краткое описание установки…………………………………………………..3

  3. Общие энергетические и материальные балансы……………………….……4

  4. Расчёт узловых точек установки…………………………….…………………4

  5. Расчёт основного теплообменника…………………………….………………7

  6. Расчёт блока очистки……………………………………………….…………..17

  7. Определение общих энергетических затрат установки…………………..…..20

  8. Расчёт процесса ректификации…………………………………….…………..20

  9. Расчёт конденсатора – испарителя…………………………………………….20

  10. Подбор оборудования…………………………………………………..………21

  11. Список литературы……………………………………………..………………22


Задание на расчёт.

Рассчитать и спроектировать установку для получения газообразного кислорода с чистотой 99,5 %, производительностью 320 м3/ч, расположенную в городе Владивостоке.


  1. Выбор типа установки и его обоснование.

В качестве прототипа выбираем установку К – 0,4, т. к. установка предназначена для получения жидкого и газообразного кислорода чистотой 99,5 %, а также жидкого азота. Также установка имеет относительно несложную схему.


2. Краткое описание работы установки.

Воздух из окружающей среды, имеющий параметры Т = 300 К и Р = 0,1 МПа, поступает в компрессорную станцию в точке 1. В компрессоре он сжимается до давления 4,5 МПа и охлаждается в водяной ванне до температуры 310 К. Повышение температуры обусловлено потерями от несовершенства системы охлаждения. После сжатия в компрессоре воздух направляется в теплообменник – ожижитель, где охлаждается до температуры 275 К, в результате чего большая часть содержащейся в ней влаги конденсируется и поступает в отделитель жидкости, откуда выводится в окружающую среду. После теплообменника – ожижителя сжатый воздух поступает в блок комплексной очистки и осушки, где происходит его окончательная очистка от содержащихся в нём влаги и СО2 . В результате прохождения через блок очистки воздух нагревается до температуры 280 К. После этого поток сжатого воздуха направляется в основной теплообменник, где охлаждается до температуры начала дросселирования, затем дросселируется до давления Р = 0,65 МПа. В основном теплообменнике поток разделяется. Часть его выводится из аппарата и поступает в детандер, где расширяется до давления Р = 0,65 МПа и поступает в нижнюю часть нижней колонны.Поток из дросселя поступает в середину нижней колонны. Начинается процесс ректификации. Кубовая жидкость (поток R, содержание N2 равно 68%) из низа нижней колонны поступает в переохладитель, где переохлаждается на 5 К , затем дросселируется до давления 0,13 МПа и поступает в середину верхней колонны. Азотная флегма (поток D, концентрация N2 равна 97%) забирается из верхней части нижней колонны, пропускается через переохладитель, где также охлаждается на 5К, затем дросселируется до давления 0,13 МПа и поступает в верхнюю часть верхней колонны. В верхней колонне происходит окончательная ректификация, внизу верхней колонны собирается жидкий кислород, откуда он направляется в переохладитель, где переохлаждается на 8 – 10 К. Далее поток кислорода направляется в жидкостной насос, где его давление поднимается до 10 МПа, и обратным потоком направляется в основной теплообменник. Затем он направляется в теплообменник – ожижитель, откуда выходит к потребителю с температурой 295 К. Азот из верхней части колонны последовательно проходит обратным потоком переохладитель азотной флегмы и кубовой жидкости, оснновной теплообменник и теплообменник – ожижитель. На выходе из теплообменника – ожижителя азот будет иметь температуру 295 К.


3. Общие энергетические и материальные балансы.

V = K + A

0,79V = 0,005K + 0,97A

МVΔi1B – 2B + VдетhадηадМ = МVq3 + Мк KΔi2K – 3K + VΔi3В – 4В М

М – молярная масса воздуха.

Мк – молярная масса кислорода.


Принимаем V = 1 моль

К + А = 1

К = 1 – А

0,79 = 0,005(1 – А) + 0,97А

А = 0,813

К = 1 – 0,813 = 0,187

Определяем теоретическую производительнсть компрессора.

(1/0,187) = х/320 => х = 320/0,187 = 1711 м3/ч = 2207,5 кг/ч


4. Расчёт узловых точек установки

Принимаем:

Давление воздуха на входе в компрессор……………………….

Давление воздуха на выходе из компрессора……………………Рвыхк = 4,5 МПА

Температура воздуха на входе в компрессор…..………………...

Температура воздуха на выходе из компрессора…….…………..

Температура воздуха на выходе из теплообменника – ожижителя…..

Температура воздуха на выходе из блока очистки…………………

Давление в верхней колонне……………………………………..

Давление в нижней колонне………………………………………

Концентрация азота в кубовой жидкости ………………………..

Концентрация азота в азотной флегме……………………………

Температурный перепад азотной флегмы и кубовой жидкости при прохождении

через переохладитель…………..……………………………..

Температура кубовой жидкости…………………………………….

Температура азотной флегмы………………………………………

Температура отходящего азота…………………………………….

Температура жидкого кислорода…………………………………..

Разность температур на тёплом конце теплообменника – ожижителя………………………………………..…………….

Температура азота на выходе из установки………………….

Температурный перепад кислорода …………………………ΔТ1К – 2К = 10 К

На начальной стадии расчёта принимаем:


Составляем балансы теплообменных аппаратов:

а) Баланс теплообменника – ожижителя.


КСр кΔТ4К – 5К + АСрАΔТ3А – 4А = VCpvΔT2В – 3В


б) Балансы переохладителя:

находим из номограммы для смеси азот – кислород.


в) Баланс переохладителя кислорода.

КCpK ΔT1К – 2К = RCpR ΔT2R – 3R

Принимаем ΔT1К – 2К = 10 К

ΔT2R – 3R = 0,128*1,686*10/6,621*1,448 = 2,4

Т3R = Т2R + ΔT2R – 3R = 74 + 2,4 = 76,4 К

i3R = 998,2


г) Баланс основного теплообменнка.

Для определения параметров в точках 3А и 4К разобьём основной теплообменник на 2 трёхпоточных теплообменника:

Истинное значение Vдет вычислим из баланса установки:

Vдет = [VMq3 + KMkΔi2K – 3K + VMΔi4B – 3B – VMΔi1B – 2B]/Mhадηад = [1*29*8 + 0,187*32*(352,8 – 349,9) + 1*29*(522,32 – 516,8) – 1*29*(563,82 – 553,75)]/29*(394,5 – 367,5)*0,7 = 0,2

Vдет = 0,2V = 0,2*1711 = 342 м3


Составляем балансы этих теплообменников:

I VCpVΔT4B – 6B = KCpKΔT3K’ – 4K + ACpAΔT2A’ – 3A

II (V – Vд )CpVΔT6B-5B = KCpKΔT3K – 3K’ + ACpAΔT2A’ – 2A

Добавим к ним баланс теплообменника – ожижителя. Получим систему из 3 уравнений.

III КСр кΔТ4К – 5К + АСрАΔТ3А – 4А = VCpvΔT2В – 3В

Вычтем уравнение II из уравнения I:

VCpVΔT4B – 6B - (V – Vд )CpVΔT6B-5B = KCpKΔT3K’ – 4K - KCpKΔT3K – 3K’ + ACpAΔT2A’ – 3A - ACpAΔT2A’ – 2A

Получаем систему из двух уравнений:

I VCpV (T4B - 2T6B + T5B ) + VдCpV(T6B – T5B) = KCpK(T4K – T3K) + ACpAΔT3A – 2A

II КСр кΔТ4К – 5К + АСрАΔТ3А – 4А = VCpvΔT2В – 3В

I 1*1,012(280 – 2*173 + 138) + 0,387*1,093(173 – 138) = 0,128*1,831(T4K – 88) +0,872*1,048(T–85)

II 1*1,012*(310 – 275) = 0,128*1,093(295 - T4K) + 0,872*1,041(295 – T)

T4K = 248,4 К

T = 197,7 К

Для удобства расчёта полученные данные по давлениям, температурам и энтальпиям в узловых точках сведём в таблицу:


5

1R

2R 3R

i, кДж/

кг

553,7 563,8 516,8 522,3 319,2 319,2 419,1 367,5 1350 1131,2 1243
Р, МПа 0,1 4,5 4,5 4,5 4,5 0,65 4,5 4,5 0,65 0,65 0,65
Т, К 300 310 275 280 138 80 188 125 79 74 76,4
1D 2D

i, кДж/

кг

1015 2465 354,3 349,9 352,8 467,9 519,5 328,3 333,5 454,6 553,
Р, МПа 0,65 0,65 0,13 0,12 10 10 10 0,13 0,13 0,13 0,13
Т, К 79 74 93 84 88 248,4 295 80 85 197,7 295

ПРИМЕЧАНИЕ.

1. Значения энтальпий для точек 1R, 2R, 3R , 1D, 2D взяты из номограммы Т – i – P – x – y для смеси азот – кислород.

2. Прочие значения энтальпий взяты из [2].


5. Расчёт основного теплообменника.

Ввиду сложности конструкции теплообменного аппарата разобьём его на 4 двухпоточных теплообменника.


Истинное значение Vдет вычислим из баланса установки:

Vдет = [VMq3 + KMkΔi2K – 3K + VMΔi4B – 3B – VMΔi1B – 2B]/Mhадηад = [1*29*8 + 0,128*32*(352,8 – 349,9) + 1*29*(522,32 – 516,8) – 1*29*(563,82 – 553,75)]/29*(394,5 – 367,5)*0,7 = 0,2

Vдет = 0,2V = 0,2* = 342,2 м3

Составляем балансы каждого из четырёх теплообменников:

I VA (i4B – i1) + Vq3 = A(i3A – i3)

II VK (i4B – i2) + Vq3 = K(i4K – i4)

III (VA – Vда)(i1 – i5B) + Vq3 = A(i3 – i2A)

IV (VК – Vдк)(i2 – i5B) + Vq3 = К(i4 – i)

Здесь VA + VК = V , Vда + Vдк = Vд

Параметры в точках i1 и i2 будут теми же, что в точке 6В

Температуру в точке 5В задаём:

Т= 138 К

Р = 4,5 МПа

i = 319,22 кДж/кг = 9257,38 кДж/кмоль

Принимаем VA = А = 0,813, VК = К = 0,187, Vдк = Vда = 0,1, q3 = 1 кДж/кг для всех аппаратов.

Тогда из уравнения I

VA (i4B – i) + Vq3 = A(i3A – i3)

0,813(522,32 – 419,1) + 1 = 0,813(454,6 – i3)

i3 = (394,6 – 112,5)/0,813 = 324,7 кДж/кг

Т3 = 140 К

Проверяем полученное значение i3 с помощью уравнения III:

(0,872 – 0,1)(394,5 – 319,22) + 1 = 0,872(i3 – 333,5)

59,1 = 0,872i3 – 290,8

i3 = (290,8 + 59,1)/0,872 = 401,3 кДж/кг

Уменьшим VА до 0,54:

0,54(522,32 – 419,1) + 1 = 0,872(454,6 – i3)

i3 = (394,6 – 70,023)/0,872 = 372,2 кДж/кг

Проверяем полученное значение i3 с помощью уравнения III:

(0,54 – 0,1)(394,5 – 319,22) + 1 = 0,872(i3 – 333,5)

i3 = (290,8 + 34,123)/0,872 = 372,6 кДж/кг

Т3 = 123 К

Тогда из уравнения II:

VK (i4B – i) + Vq3 = K(i4K – i4)

0,56(522,32 – 419,1) + 1 = 0,128(467,9 – i4)

72,6 = 59,9 – 0,128 i4

i4 = (72,6 – 59,9)/0,128 = 332 кДж/кг

Т4 = 140 К

Рассчитываем среднеинтегральную разность температур для каждого из четырёх теплообменников.

а) Материальный баланс теплообменника I:

VA (i4B – i1) + Vq3 = A(i3A – i3)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

0,54*1,15(280 – 173) + 1*q3 = 0,872*1,99(197,7 – 123)

q3 = 121,9 - 66,4 = 55,5 кДж/кг

Рассчитываем коэффициенты В и D:

VA (i4B – i) + Vq3 = A(i3A – i3)

VA ΔiB + Vq3 = A ΔiA

ΔiB = A ΔiA/ VA - V q3/VA | ΔiA/ ΔiA

ΔiB = A ΔiA/ VA - Vq3* ΔiA/ ΔiA

В = A/VA = 0,872/0,54 = 1,645

D = V q3/VA ΔiA = 1*55,5/0,54*(197,7 – 123) = 0,376

ΔiB = В ΔiA - D ΔiA = С ΔiA = (1,635 – 0,376) ΔiA = 1,259 ΔiA


Составляем таблицу:


ТВ , К

iв, кДж/кг

ΔiВ

ТА, К

iА, кДж/кг

ΔiА

0 – 0 280 522,32 0 197,7 454,6 0
1 – 1 272 512,0 10,324 190,23 - 8,2
2 – 2 261 501,7 20,648 182,76 - 16,4
3 – 3 254 491,3 30,971 175,29 - 24,6
4 – 4 245 481,0 41,295 167,82 - 32,8
5 – 5 235 470,7 51,619 160,35 - 41
6 – 6 225 460,4 61,943 152,88 - 49,2
7 – 7 218 450,1 72,267 145,41 - 57,4
8 – 8 210 439,73 82,59 137,94 - 65,6
9 – 9 199 429,4 92,914 130,47 - 73,8
10 – 10 188 419,12 103,2 123 372,6 82

С
троим температурные кривые:


ΔТсринт = n/Σ(1/ΔТср)

ΔТср

1/ΔТср

1 82 0,012
2 82 0,012
3 78 0,0128
4 79 0,0127
5 77 0,013
6 72 0,0139
7 73 0,0137
8 72 0,0139
9 69 0,0145
10 65 0,0154

Σ(1/ΔТср) = 0,1339

ΔТср = 10/0,1339 = 54,7 К


б) Материальный баланс теплообменника II:

VK (i4B – i) + Vq3 = K(i4K – i4)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

0,56*1,15(280 – 173) + 1*q3 = 0,187*1,684(248,4 – 140)

q3 = 23,4 - 68,9 = -45,5 кДж/кг

Рассчитываем коэффициенты В и D:

VК (i4B – i) + Vq3 = K(i4K – i4)

VК ΔiB + Vq3 = К ΔiК

ΔiB = К ΔiК/ VК - V q3/VК | ΔiК/ ΔiК

ΔiB = К ΔiК/ VК - Vq3* ΔiК/ ΔiК

В = К/VК = 0,128/0,56 = 0,029

D = V q3/VК ΔiК = -1*45,5/0,56*(248,4 – 140) = -0,75

ΔiB = В ΔiК - D ΔiК = С ΔiК = (0,029 + 0,75) ΔiК = 0,779 ΔiК


Составляем таблицу:

ТВ , К

iв, кДж/кг

ΔiВ

ТК, К

iК, кДж/кг

ΔiК

0 – 0 280 522,32 0 248,4 332 0
1 – 1 272 511,7 10,589 237,56 - 13,593
2 – 2 261 501,1 21,178 226,72 - 27,186
3 – 3 254 490,6 31,767 215,88 - 40,779
4 – 4 245 480 42,356 205,04 - 54,372
5 – 5 235 469,3 52,973 194,2 - 67,975
6 – 6 225 458.8 63,534 183,36 - 81,558
7 – 7 218 448,2 74,123 172,52 - 95,151
8 – 8 210 437,6 84,735 161,68 - 108,77
9 – 9 199 427 95,301 150,84 - 122,33
10 – 10 188 419,12 105,9 140 467,93 135,93




ΔТсринт = n/Σ(1/ΔТср)

ΔТср

1/ΔТср

1 32 0,03125
2 34 0,0294
3 34 0,0294
4 40 0,025
5 41 0,0244
6 42 0,0238
7 45 0,0222
8 48 0,0208
9 48 0,0208
10 48 0,0208

Σ(1/ΔТср) = 0,245

ΔТср = 10/0,245 = 40,3 К


в) Материальный баланс теплообменника III:

(VA – Vда)(i – i5B) + Vq3 = A(i3 – i2A)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

(0,54 – 0,1)*2,204(188 - 138) + 1*q3 = 0,813*1,684(123 – 85)

q3 = 55,8 – 33,9 = 21,9 кДж/кг

Рассчитываем коэффициенты В и D:

(VA – Vда)(i – i5B) + Vq3 = A(i3 – i2A)

(VА - Vда) ΔiB + Vq3 = А ΔiА

ΔiB = А ΔiА/ (VА - Vда) - V q3/VА | ΔiА/ ΔiА

ΔiB = А ΔiА/ (VА - Vда) - Vq3* ΔiА/ ΔiА

В =А/(VА - Vда) = 0,813/0,44 = 1,982

D = V q3/(VА - Vда) ΔiА = 1*21,9/0,44*(372,6 – 333,5) = 0,057

ΔiB = В ΔiА - D ΔiА = С ΔiА = (1,982 – 0,057) ΔiА = 1,925 ΔiА


Составляем таблицу:

ТВ , К

iв, кДж/кг

ΔiВ

ТА, К

iА, кДж/кг

ΔiА

0 – 0 188 394,5 0 123 372,6 0
1 – 1 175 387 7,527 119,2 - 3,91
2 – 2 168 379,4 15,1 115,4 - 7,82
3 – 3 162 371,92 22,58 111,6 -

11,73

4 – 4 158 364,4 30,1 107,8 - 15,64
5 – 5 155 356,9 37,6 104 - 19,55
6 – 6 152 349,3 45,2 100,2 - 23,46
7 – 7 149 341,8 52,7 96,4 - 27,37
8 – 8 145 334,3 60,2 92,6 - 31,28
9 – 9 141 326,8 67,741 88,8 - 35,19
10 – 10 138 319,22 75,28 85 333,5 39,1




ΔТсринт = n/Σ(1/ΔТср)

ΔТср

1/ΔТср

1 56 0,0179
2 53 0,0189
3 50 0,02
4 50 0,02
5 51 0,0196
6 52 0,0192
7 53 0,0189
8 52 0,0192
9 52 0,0192
10 53 0,0189

Σ(1/ΔТср) = 0,192

ΔТср = 10/0,245 = 52 К


г) Материальный баланс теплообменника IV:

(VК – Vдк)(i – i5B) + Vq3 = К(i4 – i)

Из баланса расчитываем истинное значение теплопритоков из окружающей среды:

(0,56 – 0,1)*2,204(188 - 138) + 1*q3 = 0,128*1,742(123 – 88)

q3 = 7,804 - 50,7 = - 42,9 кДж/кг

Рассчитываем коэффициенты В и D:

(VК – Vдк)(i – i5B) + Vq3 = К(i4 – i)

(Vк - Vдк) ΔiB + Vq3 = К Δiк

ΔiB = К Δiк/ (VК - Vдк) - V q3/VК | ΔiК/ ΔiК

ΔiB = К ΔiК/ (VК - Vдк) - Vq3* ΔiК/ ΔiК

В =К/(VК - Vдк) = 0,128/0,46 = 0,278

D = V q3/(VК - Vдк) Δiк = -1*42,9/0,46*(372,6 – 332) = - 1,297

ΔiB = В ΔiК - D ΔiК = С Δiк = (0,278 + 1,297) ΔiК = 1,488 ΔiК


Составляем таблицу:

ТВ , К

iв, кДж/кг

ΔiВ

ТК, К

iК, кДж/кг

ΔiК

0 – 0 188 394,5 0 140 332 0
1 – 1 174 387,17 7,33 134,8 - 5,06
2 – 2 167 379,8 14,7 129,6 - 10,12
3 – 3 162 371,6 22,9 124,4 - 15,18
4 – 4 158 365,2 29,3 119,2 - 20,24
5 – 5 155 357,9 36,6 114 - 25,3
6 – 6 152 350,5 44 108,8 - 30,36
7 – 7 149 343,2 51,3 103,6 - 35,42
8 – 8 146 335,9 58,6 98,4 - 40,48
9 – 9 143 328,6 65,9 93,2 - 45,54
10 – 10 138 319,22 75,28 88 372,6 50,6

ΔТсринт = n/Σ(1/ΔТср)


ΔТср

1/ΔТср

1 40 0,025
2 37 0,027
3 38 0,026
4 39 0,0256
5 41 0,0244
6 43 0,0233
7 45 0,0222
8 47 0,0213
9 50 0,02
10 50 0,02



Σ(1/ΔТср) = 0,235

ΔТср = 10/0,245 = 42,6 К


д) Расчёт основного теплообменника.

Для расчёта теплообменника разбиваем его на 2 трёхпоточных. Для удобства расчёта исходные данные сводим в таблицу.

Поток

Рср, ат.

Тср, К

Ср, кДж/кгК

Уд. Объём v, м3/кг

μ, кг*с/м2

*107

λ, Вт/мК, *103

Прямой

(воздух)

45 226,5 1,187 0,005 18,8 23,6

Обратный

2 под дав)

100 190 2,4 0,00106 108 15

Обратный

(N2 низ дав)

1,3 155 1,047 0,286 9,75 35,04

Прямой поток.

1)Скорость потока принимаем ω = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1711*0,005/3600 = 2,43*10-3 м3

3) Выбираем тубку ф 12х1,5 мм

4) Число трубок

n = Vсек/0,785dвн ω = 0,00243/0,785*0,0092*1 = 39 шт

Эквивалентный диаметр

dэкв = 9 – 5 = 4 мм

5) Критерий Рейнольдса

Re = ω dвнρ/gμ = 1*0,004*85,4/9,81*18,8*10-7 = 32413

6) Критерий Прандтля

Pr = 0,802 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*324130,8*0,8020,33 = 63,5

8) Коэффициент теплоотдачи:

αВ = Nuλ/dвн = 63,5*23,6*10-3/0,007 = 214,1 Вт/м2К


Обратный поток (кислород под давлением):

1)Скорость потока принимаем ω = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 320*0,0011/3600 = 9,8*10-5 м3

3) Выбираем тубку ф 5х0,5 мм гладкую.

4) Критерий Рейнольдса

Re = ω dвнρ/gμ = 1*0,007*330,1/9,81*106*10-7 = 21810

5) Критерий Прандтля

Pr = 1,521 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*218100,8*1,5210,33 = 80,3

7) Коэффициент теплоотдачи:

αВ = Nuλ/dвн = 80,3*15*10-3/0,007 = 172 Вт/м2К


Обратный поток (азот низкого давления)

1)Скорость потока принимаем ω = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 1391*0,286/3600 = 0,11 м3

3) Живое сечение для прохода обратного потока:

Fж = Vсек/ω = 0,11/15 = 0,0074 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = ω dвнρ/gμ = 15*0,004*2,188/9,81*9,75*10-7 = 34313

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*343130,85=299,4

7) Коэффициент теплоотдачи:

αВ = Nuλ/dвн = 299,4*35,04*10-3/0,01 = 1049 Вт/м2К


Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AΔiA/3600 = 1391*(454,6 – 381,33)/3600 = 28,3 кВт

2) Среднеинтегральная разность температур ΔТср = 54,7 К

3) Коэффициент теплопередачи

КА = 1/[(1/αв)*(Dн/Dвн) + (1/αА)] = 1/[(1/214,1)*(0,012/0,009) + (1/1049)] = 131,1 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA/KA ΔТср = 28300/131,1*54,7 = 3,95 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DHn = 1,2*3,95/3,14*0,012*32 = 3,93 м

6) Тепловая нагрузка кислородной секции

QК = КΔiA/3600 = 0,183*(467,93 – 332)/3600 = 15,1 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/αв) + (1/αК) *(Dн/Dвн)] = 1/[(1/214,1) + (1/172) *(0,01/0,007)]=77 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК/KК ΔТср = 15100/77*25 = 7,8 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DHn = 1,2*7,8/3,14*0,01*55 = 5,42 м

Принимаем l = 5,42 м.

10) Теоретическая высота навивки.

Н = lt2/πDср = 17*0,0122/3,14*0,286 = 0,43 м.


Второй теплообменник.


Поток

Рср, ат.

Тср, К

Ср, кДж/кгК

Уд. Объём v, м3/кг

μ, кг*с/м2

*107

λ, Вт/мК, *103

Прямой

(воздух)

45 155,5 2,328 0,007 142,62 23,73

Обратный

2 под дав)

100 132,5 1,831 0,00104 943,3 106,8

Обратный

(N2 низ дав)

1,3 112,5 1,061 0,32 75,25 10,9

Прямой поток.

1)Скорость потока принимаем ω = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1875*0,007/3600 = 2,6*10-3 м3


3) Выбираем тубку ф 10х1,5 мм гладкую.

4) Число трубок

n = Vсек/0,785dвн ω = 0,0026/0,785*0,0072*1 = 45 шт

Эквивалентный диаметр

dэкв = 9 – 5 = 4 мм

5) Критерий Рейнольдса

Re = ω dвнρ/gμ = 1*0,004*169,4/9,81*142,62*10-7 = 83140

6) Критерий Прандтля

Pr =1,392 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*831400,8*1,3920,33 = 145

8) Коэффициент теплоотдачи:

αВ = Nuλ/dвн = 145*10,9*10-3/0,007 = 225,8 Вт/м2К


Обратный поток (кислород под давлением):

1)Скорость потока принимаем ω = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 800*0,00104/3600 = 1,2*10-4 м3

3) Выбираем тубку ф 10х1,5 мм с оребрением из проволоки ф 1,6 мм и шагом оребрения tп = 5,5мм

4) Критерий Рейнольдса

Re = ω dвнρ/gμ = 1*0,007*1067,2/9,81*75,25*10-7 = 101200

5) Критерий Прандтля

Pr = 1,87 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*1012000,8*1,870,33 = 297,2

7) Коэффициент теплоотдачи:

αВ = Nuλ/dвн = 297,2*10,9*10-3/0,007 = 462,8 Вт/м2К


Обратный поток (азот низкого давления)

1)Скорость потока принимаем ω = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 2725*0,32/3600 = 0,242 м3

3) Живое сечение для прохода обратного потока:

Fж = Vсек/ω = 0,242/15 = 0,016 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = ω dвнρ/gμ = 15*0,01*3,04/9,81*75,25*10-7 = 60598

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*605980,85=485,6

7) Коэффициент теплоотдачи:

αВ = Nuλ/dвн = 485,6*10,9*10-3/0,01 = 529,3 Вт/м2К


Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AΔiA/3600 = 2725(391,85 – 333,5)/3600 = 57 кВт

2) Среднеинтегральная разность температур ΔТср = 52 К

3) Коэффициент теплопередачи

КА = 1/[(1/αв)*(Dн/Dвн) + (1/αА)] = 1/[(1/225,8)*(0,01/0,007) + (1/529,3)] = 121,7 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA/KA ΔТср = 57000/121,7*52 = 9 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DHn = 1,2*9/3,14*0,01*45 = 7,717 м

6) Тепловая нагрузка кислородной секции

QК = КΔiК/3600 = 0,128*(352,8 - 332)/3600 = 4,6 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/αв) + (1/αК) *(Dн/Dвн)] = 1/[(1/225,8) + (1/529,3) *(0,01/0,007)] = 140,3 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК/KК ΔТср = 4600/140*42,6 = 0,77 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DHn = 1,2*0,77/3,14*0,01*45 = 0,654 м

Принимаем l = 7,717 м.

10) Теоретическая высота навивки.

Н = lt2/πDср = 7,717*0,0122/3,14*0,286 = 0,33 м.


Окончательный вариант расчёта принимаем на ЭВМ.


6. Расчёт блока очистки.

  1. Исходные данные:

Количество очищаемого воздуха …………………… V = 2207,5 кг/ч = 1711 м3

Давление потока …………………………………………… Р = 4,5 МПа

Температура очищаемого воздуха………………………… Т = 275 К

Расчётное содержание углекислого газа по объёму …………………...С = 0,03%

Адсорбент ……………………………………………………NaX

Диаметр зёрен ………………………………………………. dз = 4 мм

Насыпной вес цеолита ………………………………………γц = 700 кг/м3

Динамическая ёмкость цеолита по парам СО2 ……………ад = 0,013 м3/кг


Принимаем в качестве адсорберов стандартный баллон диаметром Da = 460 мм и высоту слоя засыпки адсорбента

L = 1300 мм.

2) Скорость очищаемого воздуха в адсорбере:

ω = 4Va/nπDa2

n – количество одновременно работающих адсорберов;

Vа – расход очищаемого воздуха при условиях адсорбции, т. е. при Р = 4,5 МПа и Тв = 275 К:

Va = VTB P/T*PB = 1711*275*1/273*45 = 69,9 кг/ч

ω = 4*69,9/3*3,14*0,462 = 140,3 кг/ч*м2

Определяем вес цеолита, находящегося в адсорбере:

Gц = nVад γц = L*γ*n*π*Da2/4 = 1*3,14*0,462*1,3*700/4 = 453,4 кг

Определяем количество СО2 , которое способен поглотить цеолит:

VCO2 = Gц*aд = 453,4*0,013 = 5,894 м3

Определяем количество СО2, поступающее каждый час в адсорбер:

VCO2 = V*Co = 3125*0,0003 = 0,937 м3

Время защитного действия адсорбента:

τпр = VCO2/ VCO2 = 5,894/0,937 = 6,29 ч

Увеличим число адсорберов до n = 4. Тогда:

ω = 4*69,9/4*3,14*0,462 = 105,2 кг/ч*м2

Gц = 4*3,14*0,462*1,3*700/4 = 604,6 кг

VCO2 = Gc *aд = 604,6*0,013 = 7,86 м3

τпр = 7,86/0,937 = 8,388 ч.

Выбираем расчётное время защитного действия τпр = 6 ч. с учётом запаса времени.


2) Ориентировочное количество азота для регенерации блока адсорберов:

Vрег = 1,2*GH2O /x τрег

GH2O – количество влаги, поглощённой адсорбентом к моменту регенерации

GH2O = GцаН2О = 604,2*0,2 = 120,84 кг

τрег – время регенерации, принимаем

τрег = 0,5 τпр = 3 ч.

х – влагосодержание азота при Тср.вых и Р = 105 Па:

Тср.вых = (Твых.1 + Твых.2)/2 = (275 + 623)/2 = 449 К

х = 240 г/м3

Vрег = 1,2*120,84/0,24*3 = 201,4 м3

Проверяем количество регенерирующего газа по тепловому балансу:

VрегN2*CpN2*(Твх + Твых. ср)* τрег = ΣQ

ΣQ = Q1 + Q2 + Q3 + Q4 + Q5

Q1 – количество тепла, затраченное на нагрев металла;

Q2 – количество тепла, затраченное на нагрев адсорбента,

Q3 – количество тепла, необходимое для десорбции влаги, поглощённой адсорбентом;

Q4 – количество тепла, необходимое для нагрева изоляции;

Q5 – потери тепла в окружающую среду.

Q1 = GмСмср – Tнач)

Gм – вес двух баллонов с коммуникациями;

См – теплоёмкость металла, См = 0,503 кДж/кгК

Tнач – температура металла в начале регенерации, Tнач = 280 К

Тср – средняя температура металла в конце процесса регенерации,

Тср = (Твх + Твых)/2 = (673 + 623)/2 = 648 К

Твх – температура азота на входе в блок очистки, Твх = 673 К;

Твых – температура азота на выходе из блока очистки, Твх = 623 К;


Для определения веса блока очистки определяем массу одного баллона, который имеет следующие геометрические размеры:

наружний диаметр ……………………………………………….Dн = 510 мм,

внутренний диаметр ……………………………………………..Dвн = 460 мм,

высота общая ……………………………………………………..Н = 1500 мм,

высота цилиндрической части …………………………………..Нц = 1245 мм.

Тогда вес цилиндрической части баллона

GM = (Dн2 – Dвн2цм*π/4 = (0,512 – 0,462)*1,245*7,85*103*3,14/4 = 372,1 кг,

где γм – удельный вес металла, γм = 7,85*103 кг/м3.

Вес полусферического днища

GM’’ = [(Dн3/2) – (Dвн3/2)]* γм*4π/6 = [(0,513/2) – (0,463/2)]*7,85*103*4*3,14/6 = 7,2 кг

Вес баллона:

GM + GM’’ = 382 + 7,2 = 389,2 кг

Вес крышки с коммуникациями принимаем 20% от веса баллона:

GM’’’ = 389,2*0,2 = 77,84 кг

Вес четырёх баллонов с коммуникацией:

GM = 4(GM + GM’’ + GM’’’ ) = 4*(382 + 7,2 + 77,84) = 1868 кг.

Тогда:

Q1 = 1868*0,503*(648 – 275) = 3,51*105 кДж

Количество тепла, затрачиваемое на нагревание адсорбента:

Q2 = GцСцср’ – Tнач’ ) = 604,6*0,21*(648 – 275) = 47358 кДж

Количество тепла, затрачиваемое на десорбцию влаги:

Q3 = GH2OCpкип – Тнач’ ) + GH2O*ε = 120,84*1*(373 – 275) + 120,84*2258,2 = 2,8*105 кДж

ε – теплота десорбции, равная теплоте парообразования воды; Ср – теплоёмкость воды.

Количество тепла, затрачиваемое на нагрез изоляции:

Q4 = 0,2Vиз γизСизиз – Тнач) = 0,2*8,919*100*1,886*(523 – 275) = 8,3*104 кДж

Vиз = Vб – 4Vбалл = 1,92*2,1*2,22 – 4*0,20785*0,512*0,15 = 8,919 м3 – объём изоляции.

γиз – объёмный вес шлаковой ваты, γиз = 100 кг/м3

Сиз – средняя теплоёмкость шлаковой ваты, Сиз = 1,886 кДж/кгК

Потери тепла в окружающую среду составляют 20% от ΣQ = Q1 + Q2 + Q4 :

Q5 = 0,2*(3,51*105 + 47358 + 8,3*104 ) = 9.63*104 кДж

Определяем количество регенерирующего газа:

Vрег = (Q1 + Q2 + Q3 + Q4 + Q5)/ ρN2*CpN2*(Твх + Твых. ср)* τрег =

=(3,51*105 + 47358 + 2,8*105 + 8,3*104 + 9,63*104)/(1,251*1,048*(673 – 463)*3) = 1038 нм3

Проверяем скорость регенерирующего газа, отнесённую к 293 К:

ωрег = 4 Vрег*293/600*π*Da2 *n*Tнач = 4*1038*293/600*3,14*0,462*2*275 = 5,546 м/с

n – количество одновременно регенерируемых адсорберов, n = 2


Определяем гидравлическое сопротивление слоя адсорбента при регенерации.

ΔР = 2fρLω2/9,8dэх2

где ΔР – потери давления, Па;

f – коэффициент сопротивления;

ρ – плотность газа, кг/м3;

L – длина слоя сорбента, м;

dэ – эквивалентный диаметр каналов между зёрнами, м;

ω – скорость газа по всему сечению адсорбера в рабочих условиях, м/с;

א – пористость слоя адсорбента, א = 0,35 м23.

Скорость регенерирующего газа при рабочих условиях:

ω = 4*Vрегвых.ср./3600*π*Da2*n*Тнач = 4*1038*463/3600*3,14*0,462*2*275 = 1,5 м/с

Эквивалентный диаметр каналов между зёрнами:

dэ = 4*א*dз/6*(1 – א) = 4*0,35*4/6*(1 – 0,35) = 1,44 мм.

Для определения коэффициента сопротивления находим численное значение критерия Рейнольдса:

Re = ω*dэ*γ/א*μ*g = 1,5*0,00144*0,79*107/0,35*25*9,81 = 198,8

где μ – динамическая вязкость, μ = 25*10-7 Па*с;

γ – удельный вес азота при условиях регенерации,

γ = γ0 *Р*Т00вых.ср = 1,251*1,1*273/1,033*463 = 0,79 кг/м3

По графику в работе [6] по значению критерия Рейнольдса определяем коэффициент сопротивления f = 2,2

Тогда:

ΔР = 2*2,2*0,79*1,3*1,52/9,81*0,00144*0,352 = 587,5 Па


Определяем мощность электроподогревателя:

N = 1,3* Vрег*ρ*Ср*(Твх – Тнач)/860 = 1,3*1038*1,251*0,25(673 – 293)/860 = 70,3 кВт

где Ср = 0,25 ккал/кг*К


7. Определение общих энергетических затрат установки

l = [Vρв RToc ln(Pk/Pn)]/ηиз Кж*3600 = 1711*0,287*296,6*ln(4,5/0,1)/0,6*320*3600 = 0,802 кВт

где V – полное количество перерабатываемого воздуха, V = 2207,5 кг/ч = 1711 м3

ρв – плотность воздуха при нормальных условиях, ρв = 1,29 кг/м3

R – газовая постоянная для воздуха, R = 0,287 кДж/кгК

ηиз – изотермический КПД, ηиз = 0,6

Кж – количество получаемого кислорода, К = 320 м3

Тос – температура окружающей среды, принимается равной средне – годовой температуре в городе Владивостоке, Тос = 23,60С = 296,6 К


8. Расчёт процесса ректификации.

Расчёт процесса ректификации производим на ЭВМ (см. распечатки 4 и 5).

Вначале проводим расчёт нижней колонны. Исходные данные вводим в виде массива. Седьмая

строка массива несёт в себе информацию о входящем в колонну потоке воздуха: принимаем, что в нижнюю часть нижней колонны мы вводим жидкий воздух.

1 – фазовое состояние потока, жидкость;

0,81 – эффективность цикла. Поскольку в установке для ожижения используется цикл Гейландта (х = 0,19), то эффективность установки равна 1 – х = 0,81.

0,7812 – содержание азота в воздухе;

0,0093 – содержание аргона в воздухе;

0,2095 – содержание кислорода в воздухе.

Нагрузку конденсатора подбираем таким образом, чтобы нагрузка испарителя стремилась к нулю.


8. Расчёт конденсатора – испарителя.

Расчёт конденсатора – испарителя также проводим на ЭВМ с помощью программы, разработанной Е. И. Борзенко.


В результате расчёта получены следующие данные (смотри распечатку 6):

Коэффициент телоотдачи в испарителе……….……….ALFA1 = 1130,7 кДж/кгК

Коэффициент телоотдачи в конденсаторе…………… ALFA2 = 2135,2 кДж/кгК

Площадь теплопередающей поверхности………………..………F1 = 63,5 м3

Давление в верхней колонне ………………………………………Р1 = 0,17 МПа.


10. Подбор оборудования.

1. Выбор компрессора.

Выбираем 2 компрессора 605ВП16/70.

Производительность одного компрессора ………………………………..16±5% м3/мин

Давление всасывания……………………………………………………….0,1 МПа

Давление нагнетания………………………………………………………..7 МПа

Потребляемая мощность…………………………………………………….192 кВт

Установленная мощность электродвигателя………………………………200 кВт

2. Выбор детандера.

Выбираем ДТ – 0,3/4 .

Характеристики детандера:

Производительность…………………………………………………… V = 340 м3

Давление на входе ………………………………………………………Рвх = 4 МПа

Давление на выходе …………………………………………………….Рвых = 0.6 МПа

Температура на входе …………………………………………………..Твх = 188 К

Адиабатный КПД ……………………………………………………….ηад = 0,7

3. Выбор блока очистки.

Выбираем стандартный цеолитовый блок осушки и очистки воздуха ЦБ – 2400/64.

Характеристика аппарата:

Объёмный расход воздуха ……………………………….V=2400 м3

Рабочее давление:

максимальное ……………………………………………Рмакс = 6,4 МПа

минимальное………………………………………..……Рмин = 3,5 МПа

Размеры сосудов…………………………………………750х4200 мм.

Количество сосудов……………………………………..2 шт.

Масса цеолита …………………………………………..М = 2060 кг


Список используемой литературы:

  1. Акулов Л.А., Холодковский С.В. Методические указания к курсовому проектированию криогенных установок по курсам «Криогенные установки и системы» и «Установки сжижения и разделения газовых смесей» для студентов специальности 1603. – СПб.; СПбТИХП, 1994. – 32 с.

  2. Акулов Л.А., Борзенко Е.И., Новотельнов В.Н., Зайцев А.В.Теплофизические свойства криопродуктов. Учебное пособие для ВУЗов. – СПб.: Политехника, 2001. – 243 с.

  3. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 1., - М.: Машиностроение, 1998. – 464 с.

  4. Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 2., - М.: Машиностроение, 1999. – 720 с.

  5. Акулов Л.А., Холодковский С.В. Криогенные установки (атлас технологических схем криогенных установок): Учебное пособие. – СПб.: СПбГАХПТ, 1995. – 65 с.

6. Кислород. Справочник в двух частях. Под ред. Д. Л. Глизманенко. М., «Металлургия», 1967.


Распечатка 1. Расчёт основного теплообменника.


Распечатка 2. Расчёт теплообменника – ожижителя.


Распечатка 3. Расчёт переохладителя.


Распечатка 4. Расчёт процесса ректификации в нижней колонне.


Распечатка 5. Расчёт процесса ректификации в верхней колонне.


Распечатка 6. Расчёт конденсатора – испарителя.


Распечатка 7. Расчёт переохладителя кислорода.