Реферат: Решение обратной задачи вихретокового контроля
begin
B[i]:=B[i]+B[k1];
for k:=1 to mm1 do A[i,k]:=A[i,k]+A[k1,k];
end;
for i:=mp2 to m21 do
begin
Sx[i]:=B[i-mp1];
Nb[i-mp1]:=i;
end;
for i:=1 to mp1 do Sx[i]:=0;
Sx[1]:=B[k1];
Sx[mp1+k1]:=0;
Nb[k1]:=1;
103:
for i:=2 to m21 do N0[i]:=0;
104:
for i:=m21 downto 2 do
if N0[i]=0 then n11:=i;
for k:=2 to m21 do
if ((A[k1,n11]N0[k])) then n11:=k;
if A[k1,n11]<=0 then goto 105;
iq:=0;
for i:=1 to m1 do
if i<>k1 then
begin
if A[i,n11]>0 then
begin
iq:=iq+1;
if iq=1 then
begin
Sx[n11]:=B[i]/A[i,n11]; ip:=i;
end
else
begin
if Sx[n11]>B[i]/A[i,n11] then
begin
Sx[n11]:=B[i]/A[i,n11]; ip:=i;
end;
end;
end
else
if iq=0 then
begin
N0[n11]:=n11;
goto 104;
end;
end;
Sx[Nb[ip]]:=0;
Nb[ip]:=n11;
B[ip]:=B[ip]/A[ip,n11];
apn:=A[ip,n11];
for k:=2 to m21 do A[ip,k]:=A[ip,k]/apn;
for i:=1 to m1 do
if i<>ip then
begin
ain:=A[i,n11];
B[i]:=-B[ip]*ain+B[i];
for j:=1 to m21 do A[i,j]:=-ain*A[ip,j]+A[i,j];
end;
for i:=1 to m1 do Sx[Nb[i]]:=B[i];
goto 103;
105:
for k:=1 to mCur do Sx[k+1]:=Sx[k+1]+Gr[2,k];
a1:=0;
a2:=1.;
dh:=a2-a1;
r:=0.618033;
tl:=a1+r*r*dh;
tp:=a1+r*dh;
j:=1;
108:
if j=1 then tt:=tl else tt:=tp;
106:
for i:=1 to mCur do Rg[i]:=Zt[i]+tt*(Sx[i+1]-Zt[i]);
getFunctional( 0 );
cv:=abs(Fh[1,1]);
if nFreqs>1 then
for k:=2 to nFreqs do
begin
cv1:=abs(Fh[1,k]);
if cv
end;
if (j=1) or (j=3)
then cl:=cv
else cp:=cv;
if j=1 then
begin
j:=2;
goto 108;
end;
if dh
if cl>cp then
begin
a1:=tl;
dh:=a2-a1; tl:=tp; tp:=a1+r*dh ; tt:=tp; cl:=cp; j:=4;
end
else
begin
a2:=tp;
dh:=tp-a1; tp:=tl; tl:=a1+r*r*dh; tt:=tl; cp:=cl; j:=3;
end;
goto 106;
107:
if (iterI <
iterImax)AND(NOT saveResults( nStab,iterI )) then goto 102;
end;
End.
Приложение
2
- Удельная
электрическая
проводимость
материалов
Приведем
сводку справочных
данных согласно[7-9].
Материал
smin
,[МСм/м]
smax
,[МСм/м]
Немагнитные
стали
0.4
1.8
Бронзы
(БрБ, Бр2, Бр9)
6.8
17
Латуни
(ЛС59, ЛС62)
13.5
17.8
Магниевые
сплавы (МЛ5-МЛ15)
5.8
18.5
Титановые
сплавы (ОТ4,
ВТ3-ВТ16)
0.48
2.15
Алюминиевые
сплавы (В95, Д16,
Д19)
15.1
26.9
Приложение
4
- Abstract
The inverse
eddy current problem can be described as the task of reconstructing
an unknown distribution of electrical conductivity from eddy-current
probe voltage measurements recorded as function of excitation
frequency. Conductivity variation may be a result of surface
processing with substances like hydrogen and carbon or surface
heating.
Mathematical reasons and
supporting software for inverse conductivity profiling were developed
by us. Inverse problem was solved for layered plane and cylindrical
conductors.
Because the inverse problem is
nonlinear, we propose using an iterative algorithm which can be
formalized as the minimization of an error functional related to the
difference between the probe voltages theoretically predicted by the
direct problem solving and the measured probe voltages.
Numerical results were obtained
for some models of conductivity distribution. It was shown that
inverse problem can be solved exactly in case of correct
measurements. Good estimation of the true conductivity distribution
takes place also for measurement noise about 2 percents but in case
of 5 percent error results are worse.