Реферат: Исследование электрических колебаний (№27)
Нижегородский Государственный Технический Университет.
Лабораторная работа по физике №2-27.
Исследование электрических колебаний.
Выполнил студент
Группы 99 – ЭТУ
Наумов Антон Николаевич
Проверил:
Н. Новгород 2000г.
Цель работы: экспериментальное исследование собственных и вынужденных колебаний тока и напряжения на элементах в колебательном контуре; измерение параметров контура: индуктивности L, сопротивления R, добротности Q; исследование прохождения синусоидального тока через LCR-цепь.
Теоретическая часть.
Рисунок 1.
Уравнение,
которому удовлетворяет ток I в колебательном контуре (рис.1) с подключенным к нему
генератором синусоидальной ЭДС e=e0×coswt имеет
вид:
(1)
где:
- коэффициент затухания.
- собственная круговая частота, R -
сопротивление резистора, L - индуктивность катушки, С - емкость конденсатора,
;
e0, w - амплитуда и круговая частота синусоидальной ЭДС.
Общее решение неоднородного линейного уравнения (1):
(2)
где:
-
круговая частота собственных затухающих колебаний тока.
и
- начальные амплитуда и фаза собственных колебаний.
I0 - амплитуда вынужденных колебаний тока.
Dj - разность фаз между ЭДС и током.
(3)
(4)
-
импеданс цепи.
-
индуктивное сопротивление,
- емкостное сопротивление.
Собственные колебания: ![]()
Если
b2 <w02, то есть R<2×
,
то w¢ - действительная и собственная частота колебаний
представляет собой квазипериодический процесс с круговой частотой w¢,
,
периодом
, и затухающей амплитудой
(рис
1).
За
характерное время
(t - время релаксации) амплитуда тока
уменьшается в е раз, то есть эти колебания практически затухают.
-
добротность контура.
Если b2 ³w02, то w¢ - мнимая частота, и колебания представляют собой апериодический процесс.
-
критическое сопротивление.
Вынужденные колебания: c течением времени первый член в формуле (2) обращается в ноль и остается только второй, описывающий вынужденные колебания тока в контуре.
-
амплитуда вынужденных колебаний напряжения на резисторе R.
При совпадении частоты ЭДС с собственной частотой контура (w=w0), амплитуды колебаний тока и напряжения UR0 на резисторе максимальны. Большой селективный отклик колебательной системы на периодическое внешнее воздействие называется резонансом.
Экспериментальная часть.
Результаты эксперимента:
|
№ |
f, кГц |
eЭФ, мВ |
UR ЭФ, мВ |
a |
b |
|
Dj,° |
|
1 |
180 | 200 | 24 | 4,0 | 3,4 | 1,2 | 58 |
|
2 |
190 | 190 | 32 | 5,2 | 4,0 | 1,7 | 51 |
|
3 |
195 | 185 | 38 | 6,0 | 4,3 | 2,0 | 48 |
|
4 |
200 | 180 | 45 | 2,8 | 2,0 | 2,5 | 46 |
|
5 |
205 | 170 | 54 | 3,2 | 2,0 | 3,2 | 38 |
|
6 |
210 | 155 | 63 | 3,8 | 2,0 | 4,1 | 32 |
|
7 |
215 | 142 | 72 | 4,2 | 1,0 | 5,1 | 14 |
|
8 |
218 | 138 | 75 | 4,4 | 0,0 | 5,4 | 0 |
|
9 |
220 | 135 | 76 | 4,3 | 0,5 | 5,6 | 6 |
|
10 |
225 | 140 | 73 | 4,2 | 1,8 | 5,2 | 25 |
|
11 |
230 | 150 | 65 | 3,8 | 2,6 | 4,3 | 43 |
|
12 |
235 | 165 | 56 | 3,5 | 2,6 | 3,4 | 48 |
|
13 |
240 | 175 | 48 | 3,0 | 2,7 | 2,7 | 64 |
|
14 |
250 | 180 | 36 | 2,2 | 2,1 | 2,0 | 76 |
|
15 |
260 | 195 | 28 | 1,8 | 1,7 | 1,4 | 90 |
|
16 |
270 | 200 | 22 | 1,6 | 1,6 | 1,1 | 90 |
|
17 |
280 | 200 | 18 | 1,3 | 1,3 | 0,9 | 90 |
|
18 |
290 | 200 | 15 | 1,0 | 1,0 | 0,8 | 90 |
|
19 |
300 | 205 | 12 | 1,0 | 1,0 | 0,6 | 90 |
Задание 1. Исследование зависимости амплитуды вынужденных колебаний от частоты (резонансная кривая).
Исходные данные:Uвых=200 мВ, eЭФ=200 мВ. fÎ[180;300] кГц.
Расчеты необходимых величин:
1.
f 0= 220 кГц - частота резонанса.
![]()
Строим
график зависимости 

,где w1 и w2 -
значения частот на уровне ![]()

Из
экспериментального графика
видно, что он по своей форме совпадает с графиком,
полученным теоретически из формулы:
Исследование зависимости разности фаз между ЭДС и током в контуре.
Из экспериментального графика Dj=F(f) получаем: f 0=218 кГц.

Сравнивая полученные результаты с результатами из предыдущего опыта видно, что различие в величинах w0 и L незначительны.

Можно сделать вывод, что при резонансной частоте XL»XC и величина импеданса цепи минимальна.
Рисунок 2.
Задание 2.Исследование собственных электрических колебаний.
На данном рисунке представлена форма затухающих колебаний напряжения UC на конденсаторе, полученная с помощью осциллографа. Изображение совпадает с теоретическим графиком.
Из графика: Т=2×2,4×10-6с - период колебаний.
t=2×3,8×10-6с - время релаксации.
![]()
![]()


Задание 3. Исследование прохождения синусоидального тока через LCR - цепь
.
|
f,кГц |
UВЫХЭФ,10-3В |
U0ВЫХ,10-3В |
| 150 | 41 | 56 |
| 160 | 33 | 46 |
| 170 | 27 | 38 |
| 180 | 22 | 31 |
| 190 | 14 | 19 |
| 200 | 9 | 13 |
| 205 | 6 | 8 |
| 210 | 3 | 4 |
| 215 | 1 | 2 |
| 218 | 0 | 0 |
| 220 | 0 | 0 |
| 225 | 1 | 2 |
| 230 | 2 | 3 |
| 235 | 4 | 6 |
| 240 | 5 | 7 |
| 250 | 9 | 13 |
| 260 | 13 | 18 |
| 270 | 17 | 24 |
| 280 | 22 | 31 |
| 290 | 25 | 35 |
| 300 | 30 | 42 |
![]()
Построим график U0ВЫХ =F(f). Резонансная частота из графика равна: f0 =220 кГц.
![]()
![]()
При
этом импеданс цепи является бесконечно большим и ток в цепи не протекает.
R=50 Ом, f=2 МГц.

Погрешности измерений.
Задание 1.
1) Погрешность f0 : f определяли на частотомере
![]()
2) Погрешность L:
3) Погрешность Q:
![]()
4) Погрешность R:
eR =5% DR=3,1Ом
5) Погрешность XL: ![]()
![]()
6) Погрешность XC:
![]()
7) Погрешность b:

Вывод: на этой работе мы экспериментально исследовали собственные и вынужденные колебания тока и напряжения на элементах в колебательном контуре; измерили параметры контура: индуктивности L, сопротивления R, добротности Q; исследовали прохождение синусоидального тока через LCR-цепь.