Курсовая работа: Спиральная антенна

СОДЕРЖАНИЕ.

1.Режимы излучения спиральной антенны                                                      2

2.Расчетные соотношения для цилиндрической спиральной антенны         5

3.Плоская арифметическая спиральная антенна                                               8

4.Равноугольная (логарифмическая) спиральная антенна                               11

5.Пример расчета цилиндрической спиральной антенны                              14

Список использованной литературы                                                                 16

1. Режимы излучения спиральной антенны.

1.1. Спиральная ан­тенна представляет собой свернутый в спираль провод (1), который питается через коаксиальный фидер (2) (рис. 1, а). Внутренний провод фидера соединяется со спиралью, а внешняя оболочка фидера — с металлическим диском (3). Последний служит рефлектором, а также препятствует проникновению токов с внутренней на наружную поверхность оболочки фидера. Спираль может быть не только цилиндриче­ской, как на рис. 1, а, но и конической (рис. 1, в) и плоской (рис. 7) или выпуклой.

Рис.1. Спиральные антенны:

 а - цилиндрическая; б – развёрнутый виток; в – коническая.

Цилиндрическая спиральная антенна характеризуется следующими геометрическими размерами: радиусом а, шагом s, длиной одного витка, числом витков p, длиной по оси , углом подъема Спиральная антенна .

Как видно из схемы антенны и изображения развернутого витка спирали (рис. 1, б), между размерами антенны имеются следующие зависимости:

            ,Спиральная антенна       ,

1.2. Спиральные антенны используются на УКВ в режиме бегущих волн с осевым излучением и вращающейся поляризацией. Такой режим требует определенных соотношений между размерами антенны и дли­ной волны. Выявим эти соотношения.

Ток высокой частоты, проходя но спирали, вызывает излучение электромагнитных волн. Достаточно десяти-одиннадцати витков, что­бы вся подводимая к антенне энергия излучалась в пространство и не происходило отражения волн от конца спирали. Такая бегущая волна тока распространяется вдоль провода спирали с фазовой скоростью Спиральная антенна, т. е., с замедлением .

 

Рис.2.Виток спиральной антенны                                                                                 

Волна проходит один виток (от сечения 1 к сечению5 на рис. 2) за времяСпиральная антенна.Электро­магнитные волны, возбуждаемые током спирали, распространяются в воздухе со скоростью с и длиной волны.

Если бы все витки сливались, то достаточно было установить времяСпиральная антенна, равным периоду колебаний,                                       т. е., чтобы поля любой пары противоположных элементов (1-3,2-4) спирали совпадали по фазе и полностью складывались в точках оси 0'0", которая равноудалена от контура витка. Это объясняется тем, что в пределах одного витка ам­плитуды тока практически одинаковая, а различие в фазе на угол Спиральная антеннав диаметрально противоположных сечениях витка (1-3, 2-4) компенсируется противоположным направлением токов в них.

В случае спирали цилиндрической формы с шагом s условие мак­симального осевого излучения формулируется несколько иначе: за вре­мя прохождения тока по витку Спиральная антеннаэлектромагнитная волна долж­на пройти в воздухе расстояние большее, чем длина волны, на шаг s:

; соответственно

                                                            (1)

При таком коэффициенте замедления токи в любых двух сечениях, расположенных под углом 90° (например, в 1 и 2, 2 и 3, 3 и 4, 4 и 5), вызывают на оси О'О" поля, которые сдвинуты по фазе на 90°, и волны, которые поляризованы под углом 90°. В результате сложения этих линейно-поляризованных волн получаются волны с круговой поляриза­цией.

1.3. Опытным путем установлено, что с увеличением длины волны  Спиральная антенна  фазовая скорость уменьшается, а коэффициент замедления Спиральная антеннаувеличивается во столько же раз. Благодаря этому условие осевого излучения (1) поддерживается в широком диапазоне волн:

Спиральная антенна(рис. 3, а).

                   Рис.3.ДН цилиндрической спиральной антенны

                               при различной длине витка спирали

При длине витка  набег фазы в 360° происходит при про­хождении волной тока нескольких витков спирали. При этом антенна уподобляется электрически малой рамке из N витков провода, которая имеет ДН в виде восьмерки с максимумами излучения в плоскости, перпендикулярной оси спирали (рис. 3, б). ЕслиСпиральная антенна, то на одном витке спирали укладывается две, три и более волн, а это приво­дит к наклонному излучению и конусной форме пространственной ДН (рис. 3, в).

1.4. Наиболее выгодный режим — осевого излучения, который, как известно, требует длины витка Спиральная антеннаи обеспечивает полосу пропус­кания Спиральная антенна .  Эта полоса может быть значительно расширена путем перехода к конической антенне (рис, 1, б), в которой участок (2) со средней длиной витка  удовлетворяет условиюСпиральная антенна, а крайние участки (1, 3) с большими (Спиральная антенна) и меньшими () длинами витков удовлетворяют аналогичным условиям, но для мак­симальной и минимальной  Спиральная антеннадлин волн рабочего диапазона:

,Спиральная антенна. В зависимости от ра­бочей длины волны Спиральная антеннаинтенсивно излучает только одна из зон спирали и только этой активной зоной определяется острота ДН.

2. Расчетные соотношения для цилиндрической спиральной ан­тенны.

2.1. Чтобы получить максимальный КНД, нужно установить оптимальный коэффициент замедленияСпиральная антенна, при котором в направле­нии оси спирали 0'0" (рис. 2) поля первого и последнего витков на­ходятся в противофазе. Иначе говоря, необходимо дополнить условие (1) задержкой волны тока спирали на полупериод Т/2, а в каждом витке ее — на Спиральная антенна:

.

Отсюда находим оптимальный коэффициент замедления вдоль провода спирали:

                       ,                                   (2)

При этом, правда, получается эллиптическая поляризация, но так какСпиральная антенна, то коэффициент весьма незначительно от­личается от и полученную поляризацию можно считать круговой. Полагая Спиральная антенна= 1,2 ... 1,3, определим из выражения (2) угол подъема спирали, соответствующий оптимальным условиям работы антенны

:

Отсюда

,                                               (3)

Длина спирали подбирается в соответствии с оптимальным ко­эффициентом замедления вдоль оси спирали. При Спиральная антенна=1,2…1,3 имеем, что соответствует углу подъема спирали Спиральная антенна=12 ... 16° и числу витков р = 5 ... 14.

2.2. Рассматривая каждый виток спирали как элементарный излу­чатель с фазовым центром на оси 0'0", определяем функцию направлен­ности антенны  как произведение функции направленности одного витка  на множитель решетки из р элементов. Так как р велико, а направленность одного витка мала, то принимаем. В резуль­тате имеем

(4)

Угол , как и прежде, отсчитывается от перпендикуляра к оси линей­ной решетки.

2.3. Для спиральных антенн оптимальных размеров опытным путем установлены следующие формулы:

ширина диаграммы направленности

,                                                                     (5)

коэффициент направленного действия

       ,                                               (6)

 входное сопротивление

,                                                           (7)       

2.4. Итак, цилиндрические и конические спиральные антенны  широкополосные с осевым излучением волн круговой поляризации. Направленность цилиндрических спиралей средняя, а конических — ниже средней (не вся спираль участвует в излучении на данной часто­те), но последние обладают большей диапазонностью. Применяются и те и другие как самостоятельные антенны в диапазонах дециметровых а метровых волн, а также как облучатели антенн сантиметровых волн.

3. Плоская арифметическая спиральная антенна.

3.1. В процес­се развития радиотехники все больше требуются антенно-фидерные устройства, рассчитанные на работу в очень широком диапазоне ча­стот и притом без всякой перестройки. Частотная независимость таких антенно-фидерных устройств основана на принципе электродинамиче­ского подобия.

Этот принцип состоит в том, что основные параметры антенны (ДН и входное сопротивление) остаются неизменными, если изменение дли­ны волны  сопровождается прямо пропорциональным изменением ли­нейных размеров активной области антенны. При соблюдении данного условия антенна может быть ча­стотно-независимой в неограничен­ном диапазоне волн. Однако разме­ры излучающей структуры конеч­ны и рабочий диапазон волн лю­бой антенны тоже ограничен.

Из этой группы антенн рассмот­рим плоские арифметические и равноугольные спирали и логариф­мически-периодические антенны.

       Рис.4.  Арифметическая спираль

3.2. Арифметическая спираль вы­полняется в виде плоских металли­ческих лент или щелей в металли­ческом экране (рис. 4). Уравне­ние этой спирали в полярных координатах

где  — радиус-вектор, отсчитываемый от полюса О; а — коэффициент, характеризующий приращение радиус-вектора на каждую единицу приращения полярного угла Спиральная антенна; b — начальное значение радиус- вектора.

Спираль может быть двухзаходной, четырёхзаходной и т. д. Если спираль двухзаходная, то для ленты (щели) /, показанной штриховы­ми линиями, угол  отсчитывается от нуля, а для ленты //, показанной сплошными линиями, — от 180°, т. е. спираль образована совершенно идентичными лентами, повернутыми на   180° друг относительно друга.

Начальные точки ленты / соответствуют радиус-векторамСпиральная антенна, которые обозначим  и Спиральная антенна. Следовательно, ширина ленты. Описав один оборотСпиральная антенна, лента занимает поло­жение D, в котором радиус-вектор больше начального наСпиральная антенна. На этом отрезке ВD размещаются две ленты и два зазора, и если ширина их одинаковая, тоСпиральная антенна, Отсюда определяем коэффициент.

3.3. Питание спирали может быть противофазным, как на рис. 4, или синфазным. В первом случае токи через зажимы А, В, соединяю­щие ленты с фидером, имеют противоположные фазы. Путь тока в лен­те / больше, чем в ленте //, на полвитка. Например, в сечении СD лента // попадает, описав полвитка, а лента / — один виток, в сечение ЕF—соответственно полтора и два витка и т. д. Поскольку длина витка по мере развертывания спирали возрастает, увеличивается рас­хождение фазы токов в лентах. Обозначив средний диаметр витка Спиральная антенна находим сдвиг по фазе, соответствующий длине полувитка:

Если к этому прибавить начальный сдвиг, равный , то получим результирующее расхождение по фазе токов в смежных элементах двухпроводной линии

За счет второго слагаемого угол  отличен от Спиральная антенна, а в таких условиях электромагнитные волны излучаются, даже если зазор между лентами мал по сравнению с длиной волны.

Интенсивно излучает только та часть спирали, в которой токи смеж­ных элементов обеих лент совпадают по фазе:

Подставляя , находим, что средний диаметр первого «резонанс­ного» кольца , а периметр этого кольца Спиральная антенна.Сред­ний диаметр и периметр второго (k=2), третьего (k=3) и т. д. «ре­зонансных» колец соответственно в три, пять, ... раз больше. Так как излучение радиоволн спиралью вызывает большое затухание тока от ее начала к концу, то интенсивно излучает только первое резонансное кольцо, а остальная, внешняя часть спирали как бы «отсекается» {явление отсечки излучающих токов}.

3.4. Активная часть спирали представляет наибольший интерес и по другой причине. Затухание тока, вызванное излучением, настолько велико, что отражение от конца спирали практически отсутствует, т. е. ток в спирали распределяется по закону бегущих волн. К тому же пе­риметр первого резонансного кольца равен длине волны . В таких условиях, как показано в п. 1, происходит осевое излучение с вращаю­щейся поляризацией, которое в данном случае наиболее желательно.

Диаметр спирали должен быть достаточно велик, чтобы на макси­мальной волне диапазона Спиральная антеннасохранилось первое «резонансное» кольцо (Спиральная антенна),а с уменьшением длины волны это кольцо долж­но сжиматься до тех пор (Спиральная антенна) , пока оно еще может полностью разме­ститься вокруг узла питания. Тогда в пределах Спиральная антенна отноше­ние среднего периметра первого «резонансного» кольца Спиральная антенна к длине волны  остается постоянным и тем самым выполняется основное условие сохранения направленных свойств антенны в широком диапазоне волн Спиральная антеннаПравда, направленность арифметической спирали невелика (Спиральная антенна60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний пери­метр, равный Спиральная антенна.

Второе условие получения диапазонной антенны—постоянство входного сопротивления — достигается здесь тем, что спираль ра­ботает в режиме бегущей волны тока. Это сопротивление активное (100—200 Ом). При питании от коаксиального фидера (Спиральная антенна Ом) согласование производят ступенчатым или плавным трансформатором.

3.5. Спираль излучает по обе стороны своей оси. Чтобы сделать ан­тенну однонаправленной, ленточную спираль помещают на диэлектри­ческой пластине толщиной , другую сторону которой металлизи­руют. Если же спираль щелевая, то ее вырезают на стенке металличе­ского короба; тогда противоположная стенка короба играет роль отра­жающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пла­стине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн  7.5 ... 15 см при Спиральная антенна, ширине диаграммы направлен­ности 2Спиральная антенна' = 60... 80° и коэффициенте эллиптично­сти в направлении макси­мума главного лепестка менее 3 дБ, т. е. практиче­ски поляризацию можно считать круговой. Плоские спиральные антенны удоб­но изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

4. Равноугольная  (логарифмическая)  спиральная  антенна.

4.1. Широкодиапазонность антенн такого вида основана на том, что если отношение линейных размеров излучателя к длине волны оста­ется постоянным и излучающая структура полностью определяется ее полярными углами, то направленность антенны оказывается абсолютно независимой от частоты.

Рис.5. Логарифмическая спираль

Равноугольная спираль (рис. 5) строится в полярных координа­тах по уравнению

где  — радиус-вектор в начале спирали (); а — коэффициент,

определяющий степень увеличения радиус-вектора с увеличением полярного угла Спиральная антенна.

Двухзаходная спираль образуется двумя проводниками или щеля­ми, но в отличие от архимедовой спиральной антенны толщина их не­постоянна и возрастает с увеличением угла Спиральная антенна. Пусть начальный радиус-вектор на внутренней границе 1-го проводника равен Спиральная антенна и на внешней. Тогда уравнениями граничных спиралей являются

                                                                                                             (8)

    .                                                                 (9)

4.2. Для оценки диапазонности логарифмической спирали исследуем зависимость отношения Спиральная антенна от угла . Числитель дроби Спиральная антенна,а так как ,

 то зна­менатель дроби  и искомое отношение ,(10)

 где . Следовательно, изменение длины волны вызывает только смещение активной области спирали на некоторый угол , а отношение Спиральная антенна и направленное действие антенны от этого не меняются. Если бы спираль была бесконечной, то диапазонность антенны была безграничной, но реальная антенна имеет конечную
длину и эффективно работает в ограниченном, хотя и очень широком диапазоне волн ,причем Спиральная антенна определяется максимальной длиной спирали, а Спиральная антенна — минимальны­ми размерами узла питания.

4.3. Логарифмическая спираль работает в режиме бегущих волн (вследствие излучения ток затухает к концу спирали), и ее входное сопротивление Спиральная антенна Ом.

         Рис.6. Щелевая плоская логарифмическая спиральная

                                                       антенна

Типовая щелевая логарифмическая спираль (рис. 6) имеет мак­симальную длину ветви 42,3 см, начальный радиус 0,51 см и коэффи­циент  = 0,303. Антенна излучает волны с вращающейся поляриза­цией в диапазоне  см и Спиральная антенна не превышает двух при пита­нии спирали от 50-Ом коаксиального кабеля. Параметры антенны на­ходятся в допустимых пределах даже при двадцатикратном изменении длины волны.

5.Пример расчета спиральной цилиндрической антенны.

Для построения диаграммы направленности антенны, пользуясь экспериментальными данными исследования спиральных антенн [1.Рис.1.3.XXV.], вычисляю   по   формулам (4) – (7)  функцию направленности антенны.

Учитывая:                                       Спиральная антенна

подставим все значения в формулу (4):

 .


Используя приложение ”MathCAD 7 professional” получил следующий вид диаграммы направленности антенны:

.

По формуле 5 рассчитываю ширину диаграммы направленности:

21.586.

Коэффициент направленного действия :

70.768.

Входное сопротивление:

Итак, цилиндрические и конические спиральные антенны  широкополосные с осевым излучением волн круговой поляризации. Направленность цилиндрических спиралей средняя, а конических — ниже средней (не вся спираль участвует в излучении на данной часто­те), но последние обладают большей диапазонностью. Применяются и те и другие как самостоятельные антенны в диапазонах дециметровых и метровых волн, а также как облучатели антенн сантиметровых волн.

Список использованной литературы.

1.Айзенберг Г.З. Антенны ультракоротких волн . «Связьиздат»,М.1957.700 с

2.Лавров А.С.,Резников Г.Б. Антенно-фидерные устройства. «Сов.радио»,М.,1974,368 с.

3.Белоцерковский Г.Б. Основы радиотехники и антенны.В 2-х ч.

Ч. 2.Антенны-М.:Радио и связь,1983-296с.