Статья: Физическое состояние вещества геосфер

В. В. Орлёнок, доктор геолого-минералогических наук

Плотность. Средняя плотность самой верхней литосферной оболочки Земли толщиной 0 – 33 км известна из непосредственных определений и ряда вполне приемлемых экстраполяций – она составляет 2,7 – 3,0 г/см3.

Средняя плотность вещества Земли легко определяется из закона тяготения Ньютона:

.     (II.1)

Здесь G = 6,67·10-8 см3/г·с2 (в системе СГС) – гравитационная постоянная; М – масса однородной шарообразной Земли радиусом R. Отсюда можно найти массу Земли, если известна средняя плотность заполняющего ее вещества:

,     (II.2)

откуда с учетом (II.1) находим

.      (II.3)

Подставляя в правую часть выражения (II.1) средние значения g =

= 982,0 см/с2 и R = 6,371·108 см, получаем:

г/см3.      (II.4)

Таким образом, простой расчет показывает, что средняя плотность Земного шара почти в два раза больше средней плотности литосферной оболочки Земли. Следовательно, дефицит плотности должен восполняться на более глубоких уровнях планеты.

Характер изменения плотности с глубиной должен при этом удовлетворять закону изменения скоростей упругих волн, а распределение масс – наблюдаемому моменту инерции вращающейся Земли:

.     (II.5)

Кроме того, плотность на поверхности Земли должна быть равна фактической средней плотности литосферы. Поэтому принятие наиболее простого закона непрерывно-монотонного возрастания плотности с глубиной в соответствии с гидростатической моделью хотя и дает плотность в центре Земли порядка 10 – 11 г/см3, близкую к вероятной (Магницкий, 1965), однако не отвечает ни одному из вышеперечисленных условий.

Близкое к реальному изменение плотности с глубиной было определено с учетом данных сейсмологии, среднего для Земли значения момента инерции I, известного по спутниковым данным, и средней плотности . Например, в случае однородной модели момент инерции был бы равен:

.    (II.6)

Здесь С – момент инерции относительно полярной оси; А – момент инерции относительно экваториальной оси. Согласно наблюдениям значение I* для реальной Земли оказалось равно (Мельхиор, 1976):

I/Ma2 = 0,33089.

Это соответствует значительной концентрации массы в центре планеты. В этой связи интересно сравнить I* для Луны – он равен  0,402 ± 0,02, т.е. Луну с хорошим приближением можно рассматривать как однородное тело.

В последние годы стало ясно, что учета только I* оказывается недостаточно для того, чтобы объяснить особенности и периоды колебания земного шара, возникающие под действием сильных землетрясений (типа чилийского, 1961 г.) и суточных приливообразующих сил. Дело в том, что в случае полностью твердой Земли частота ее колебания под действием приложенной силы будет несколько выше, чем частота колебаний шара с «жидким» ядром. «Болтание» твердого субъядра относительно покрывающей его жидкой оболочки внешнего ядра увеличивает период колебания всей системы. Это и было обнаружено при исследовании периодов колебания Земли М. Молоденским (1961) и Г. Джеффрисом (1960).

С учетом этих данных и на основе ранее рассчитанной модели внутреннего строения Земли (Гутенберг, 1963; Мельхиор, 1976) методом машинного перебора установили, что для удовлетворения I* =  = 0,33089 и для получения наилучшего согласия с крутильными и сфероидными колебаниями низких порядков (при прочих вышеперечисленных условиях) необходимо ввести аномальный скачок плотности на границе с ядром, т.е. на глубине 2900 км. Близкие результаты были получены Ф. Прессом (1968), рассмотревшим пять миллионов моделей внутреннего строения Земли, соответствующих данному распределению скоростей. Путем согласования значений массы Земли, ее момента инерции, времени пробега P- и S-волн и собственных колебаний на низших гармониках было выбрано четыре модели, удовлетворяющие всем условиям (табл. II.2). В частности, согласно данным Б. Болта и К. Буллена, в ядре имеются два скачка плотности на расстояния 1210 и 1660 км от центра Земли при общем радиусе ядра 3470 км (табл. II.2).

Таблица II.2

Строение мантии и ядра Земли (по Мельхиору, 1975)

Зона R, км Скорость, км/с Плотность, г/см3
Мантия 3470 10,0 8,33
Внешнее ядро 1810 10,03 9,6
1660 10,31 10,05
Внутреннее ядро 1210 11,5
0 11,23 13,23

Давление и сила тяжести внутри Земли. Нарастание давления Р с глубиной r в недрах Земли подчиняется гидростатическому закону:

,     (II.7)

т.е. уплотнение пропорционально весу вещества слоя, приходящегося на единицу площади. Таким образом, давление изменяется как непрерывная функция, возрастающая с глубиной от 0 атм на поверхности до 1,3×106 атм на границе внешнего ядра и 4×106 атм в центре Земли (Магницкий, 1965; Гутенберг, 1963) (рис. 10).

Зная закон распределения плотности с глубиной, можно рассчитать изменение ускорения силы тяжести:

,   (II.8)

где R – расстояние от центра Земли до измеряемого уровня на шаре. Ускорение силы тяжести медленно возрастает до границы внешнего ядра с 980 до 998 см/с2, на границе испытывает резкий скачок до 10,37 см/с2 и затем быстро уменьшается к центру Земли, где оно равно нулю (рис. 10). Столь резкое уменьшение гравитации в твердом ядре, несомненно, должно иметь большое значение для создания здесь определенных условий дифференциации протовещества планеты. В самом деле, если ускорение силы тяжести на границе внешнего ядра по сравнению с поверхностью Земли увеличивается почти на 2,7 см/с2, то центробежное ускорение уменьшается примерно на половину (порядка 1,6 см/с2). Со стороны центра Земли вектор ускорения силы тяжести будет направлен в сторону внешней границы «жидкого» ядра с одновременным увеличением в том же направлении центробежного ускорения. Из этого следует, что при такой структуре поля силы тяжести дифференциация вещества будет иметь большую составляющую по направлению от центра Земли. Следовательно, в сторону субъядра могут быть отмобилизованы лишь наиболее тяжелые компоненты протовещества, причем для их перемещения потребуется дополнительная сила, направленная не вдоль радиуса. Такой силой может быть конвективное движение.

Таблица II.3

Физические параметры земных оболочек (по Буллену, Хаддону, 1967)

Слой

Глубина,

км

Р×1012,

дин×см-2

r, г/см3

К×10

дин×см-2

m×1012

дин×см-2

g, см/с2
А 0 0,000 2,84 0,65 0,36 982,2
В 15 0,004 3,31 1,03 0,71 983,2
60 0,019 3,34 1,11 0,72 984,7
С 350 0,117 3,56 1,76 0,72 994,3
650 0,234 4,25 2,76 1,43 998,1
D 850 0,321 4,44 3,24 1,73 996,1
2700 1,24 5,42 6,17 2,86 1050
Е 2878 1,34 9,89 6,50 0 1080
F 4561 2,93 11,83 11,97 0 630
4711 3,04 12,26 12,40 0,52 590
5161 3,33 12,70 13,57 0 430
G 6371 3,67 13,00 15,00 1,11 0

Вязкость и жесткость внутри Земли. Для оценки состояния текучести вещества внутри оболочек Земли необходимо знать их вязкость h и жесткость m. Эти параметры не могут быть получены из рассмотрения упругих свойств вещества недр Земли, так как последние вызваны кратковременными деформациями среды (секунды, доли секунды). Лишь длиннопериодные собственные колебания земного шара (порядка десятков минут и более), вызванные приливными силами и землетрясениями, а также вековые изменения скорости вращения Земли вокруг своей оси могут дать информацию об h и m.

Еще в начале прошлого века было установлено, что широта многих астрономических обсерваторий при измерениях в течение ряда лет не остается постоянной. Изменение широты могло происходить вследствие двух возможных причин – горизонтального смещения блоков земной поверхности либо от качания земной оси вращения. В 1980 г. одновременными измерениями широты в обсерваториях Берлина и Гонолулу, отстоящих друг от друга на 180° по долготе, было доказано второе предположение (Ботт, 1974). Эти данные также показали отсутствие горизонтальных перемещений Европы относительно дна центральной части Тихого океана. В 1892 г. А. Чандлер установил, что эти колебания широты имеют период 430,7 суток.

Для абсолютно твердой Земли, согласно Эйлеру, период собственных колебаний равен 305 суткам. Чем меньшую жесткость имеет тело Земли в целом и «жидкое» ядро в частности, тем больше будет период ее собственных колебаний. Таким образом, приведенные данные показывают, что реальная Земля отличается от абсолютно твердого тела и, следовательно, должна обладать определенной вязкостью. Наиболее сильное доказательство «жидкого» (или, во всяком случае, сходного с нею) состояния ядра после сейсмологических данных дают такие исследования нутаций. Н. Жобер теоретически показал значительные изменения наинизшего периода Т колебаний Земли в зависимости от твердости внутреннего субъядра (Мельхиор, 1976):

m, дин×см-2 Т, мин
36×1011 51,9
30×1011 52,5
15×1011 52,24

Сравнение периодов собственных колебаний сферы, которые полностью определяются размерами, внутренним строением и упругими свойствами вещества внутри планеты, с моделями К. Буллена, Б. Гутенберга и др. показали для наинизших гармоник от чилийского (1960 г.) и аляскинского (1964 г.) землетрясений, что наблюдаемые периоды больше теоретических. Поскольку крутильные колебания Земли в отличие от сфероидальных не зависят от Р-волн, а зависят от S-волн (Мельхиор, 1976), то это значит, что необходимо отказаться от модели однородного жидкого или однородного твердого ядра и уточнить закон изменения плотности с глубиной. Этому условию удовлетворяла новая модель К. Буллена и М. Ботта, о которой говорилось выше, со скачками плотности на расстоянии 1210 и 1640 км от центра Земли (см. табл. II.2). Расчеты, выполненные различными авторами по результатам обработки приливного запаздывания вращения Земли (М. Молоденский, П. Мельхиор, Н. Такеучи и др.), дают для Земли в среднем m = 1?2×1012 дин×см-2. Приблизительная оценка m внутри Земли в соответствии с данными по земным приливам может быть приведена по формуле Прея:

дин×см-2,       (II.9)

где r – радиус. Таким образом, жесткость m растет с глубиной пропорционально квадрату радиуса. Однако эта оценка грубая, так как не учитывает скачков плотности на границах оболочек и не характеризует особые условия на границе внешнего ядра.

Чандлеровский период обусловлен изменением главного момента инерции Земли и для абсолютно жесткой сферы определяется из выражения (Мельхиор, 1976):

,          (II.10)

где А и С – моменты инерции относительно экваториальной и полярной осей; ts – продолжительность звездных суток. Причиной колебания момента инерции Земли являются приливы, меняющие скорость ее вращения. По сравнению с позиционной астрономией, дающей дискретные значения вариации широты как функции угла между отвесной линией и небесным экватором, измеряемого зенит-телескопом, наблюдения над приливами дают более детальные сведения вплоть до суточных колебаний. Однако выбор модели распределения m, которая удовлетворительно согласовалась бы с наблюдениями земных приливов и периодами колебания полюсов, представляет непростую задачу. Расчеты, выполненные М. Молоденским и Н. Такеучи, показывают, что возможен довольно большой интервал m, меняющийся в пределах от 0 до 109 дин×см-2, согласующийся с наблюдениями. П. Мельхиор (1968) полагает, что пока не будут преодолены аппаратурные трудности и не решены проблемы исключения из наблюдений эффектов, не относящихся к приливным нутациям, мы не сможем выбрать реальную модель распределения m. На рис. 11 приведены расчетные данные поведения m, взятые из работы Б. Гутенберга (1963). Предполагаются наиболее вероятными распределения 2 и 3, так как они лучше согласуются с сейсмологическими данными о непрохождении поперечных волн через внешнее ядро и ослабление здесь продольных волн (Гутенберг, 1963; Смит, 1975). Таким образом, непрохождение S-волн через внешнее ядро, свидетельствующее об абсолютной или близкой к этому несжимаемости находящегося здесь вещества, возможно, имеет другую природу, так как данные по приливам указывают на вероятность нулевого m, хотя и значительно меньшего по сравнению с оболочкой. Аналогичный вывод получил Л.Н. Рыкунов в 1959 г. по результатам модельных исследований дифракции ультразвуковых волн. Величина m оказалась равной 107 дин×см-2.

Особый интерес представляет оценка вязкости Земли как в целом для сферы, так и по отдельным оболочкам. Однако получить этот параметр из наблюдений над приливными деформациями твердой Земли и чандлеровских колебаний полюсов не удается (Мельхиор, 1976). Это значит, что период релаксации возникающих при этом в теле Земли напряжений деформации больше преобладающих периодов указанных колебаний (наибольший период лунных приливов составляет 18,61 года, качаний полюса – 1,2 года). Вместе с тем имеется немало признаков, свидетельствующих о том, что вещество недр Земли обладает определенной вязкостью. Сюда относятся экваториальное вздутие, периодическое и вековое колебательное движение полюса, вековое замедление вращения Земли, затухание ее собственных колебаний, изостазия и др. Поскольку величина

        (II.11)

характеризует период релаксации напряжений, то отсюда ясно, что наблюдаемые приливные и чандлеровские ряды Т меньше t для всей Земли. Следовательно, имея твердость стали, земной шар массой 5,974×1027 г реагирует на возмущающие силы отнюдь не как абсолютно твердый стальной шарик небольшой массы, а как упруговязкое тело. Поэтому для определения t и, следовательно, h необходимо было найти на Земле процессы с заведомо большой длительностью. Таковым оказалось гляциоизостатическое поднятие Фенноскандии и Канадского докембрийского щита. Обе эти структуры характеризуются отрицательными гравитационными аномалиями (-25 и -35 мгл), соизмеримыми с площадью поднятия (Гутенберг, 1963).

Начиная с 6800 г. до н.э. величина поднятия составила 270 м и с учетом отрицательной гравитационной аномалии в 25 мгл следует ожидать дополнительного поднятия Фенноскандии еще на 200 м. Таким образом, для максимальной скорости поднятия в центре области, равной 1 м/100 лет, было получено h = 9×1022 пуаз (дин×см-2×с) – для земной коры и h = 9×1021 пуаз – для верхней мантии.

В существовании постгляциальных поднятий канадского и скандинавского щитов можно было бы сомневаться, так как точность измерений, производимых относительно среднего уровня моря, низка (Гутенберг, 1963). Последнее обусловлено неясностью различных реперов, сохранившихся на побережье Балтийского моря и Великих озер Северной Америки и принимаемых за уровни отсчета, методическими трудностями самих измерений, обусловленных, в частности, нерегулярными колебаниями среднего уровня моря, зависящими от метеоусловий, ветров, количества выпадаемых осадков, а также приливными прогибаниями твердой литосферы с различными периодами и неизвестными амплитудами, глобальными наклонами блоков земной коры, вызванными тектоническими причинами и т.д. Однако начатые еще в 20-х годах А. Вегенером измерения толщины льда в Гренландии, а затем международные исследования в Антарктиде (Атлас Антарктики, 1969) выявили существенное прогибание кристаллической поверхности материка от периферии к центру по мере роста толщины ледяного панциря от 0 – 200 до 1200 – 3000 м. Факт образования под тяжестью льда такого прогиба в твердой кристаллической литосфере, а вместе с ним и значительных отрицательных аномалий силы тяжести служит сильной поддержкой вязкого постгляционального поднятия разгруженной коры в Канаде и Фенноскандии.

Г. Джеффрис (1922) произвел оценку вязкости внешнего ядра по степени ослабления продольных сейсмических волн, прошедших через него. Верхний предел h оказался равен 109 пуаз, т.е. существенно меньше, чем в коре и мантии. Это согласуется с рассмотренными выше данными об уменьшении жесткости m и, как показал Ф. Берч (1952), если вязкость h превысит 1010 пуаз, то ядро станет обладать невязкими свойствами, характерными для твердых тел. А это уже будет противоречить данным сейсмологии и материалам по изучению собственных колебаний Земли. Нижний предел вязкости для Земли в целом по оценкам ее собственных колебаний составляет 1018 пуаз. Учитывая значительное увеличение скорости распространения упругих волн и плотности в нижней мантии, значительно превышающее аналогичные параметры в земной коре, следует предположить, что и вязкость нижней мантии будет существенно больше 1022 пуаз, т.е. вязкости литосферы.

Приведенные оценки h, хотя и довольно схематичны, позволяют установить порядок времени релаксации t в различных оболочках Земли.

Таким образом, на основе (II.11) в среднем для земной сферы имеем:

c;        (II.12)

для литосферы:

c;    (II.13)

для астеносферы:

c;     (II.14)

для нижней мантии (нижний предел h):

c;    (II.15)

для внешнего («жидкого») ядра (верхний предел h):

c.    (II.16)

Таким образом, учитывая, что 1 год = 107 с, имеем период релаксации для земной сферы в целом 10 лет, для литосферы – 10 тыс. лет, для астеносферы – 1 тыс. лет, для нижней мантии – 100 тыс. лет и для внешнего ядра – от бесконечности до 1 с. Из приведенного видно, что для нижней мантии величина h, очевидно, сильно занижена, вероятнее всего (см. далее), t здесь измеряется многими миллионами, если не сотнями миллионов лет. Сравнивая h в среднем для Земли и h для ядра, можно заключить, что приведенные предельные значения t для ядра нереальны. Первое (t = ¥ ) соответствует абсолютно твердому телу, второе (t = 1 с) – ньютоновской жидкости, мгновенно реагирующей на приложенное напряжение. Как мы видели выше, ни то ни другое в ядре не наблюдается. Скорее всего реальное значение h надо искать где-то посредине между 109 и бесконечностью, чтобы полученная величина была близка к 107 с. Возможны значения h = 101 – 102 пуаз. Но в этом случае нам придется объяснить причину непрохождения через внешнее ядро поперечных волн нежидким его состоянием. В свете современной теории поведения высокопроводящей плазмы в магнитном поле такое объяснить возможно. Об этом мы будем говорить при рассмотрении проблемы генерации геомагнитного поля.

Важнейший вывод, который следует из сравнения параметров жесткости и вязкости Земли, заключается в том, что верхние оболочки и внешнее ядро сферы в масштабе десятков тысяч лет можно рассматривать как пластичное тело. Для существенно меньших интервалов времени это упругая среда, подчиняющаяся закону Гука. В этом заключается фундаментальная физическая особенность Земли как планетного тела, из которой вытекают важные геофизические и тектонические следствия в приложении к перисфере Земли. В частности, меньшая по сравнению с литосферой вязкость астеносферного слоя (волновод Гутенберга) подтверждается тем, что 97% всех зарегистрированных землетрясений имеют очаги не глубже 30 – 50 км (Гутенберг, 1963). Глубокие же землетрясения (300 – 720 км), выходящие за пределы волновода, имеют ограниченное распространение и приурочены главным образом к узким линейным зонам континентальной окраины и островных дуг, где, вероятно, физические условия состояния вещества волновода нарушены (Ботт, 1974). Иными словами, столь характерная сейсмичность перисферы обусловлена малым периодом релаксации подстилающего ее материала, отчего возникающие здесь напряжения успевают рассасываться без разрыва сплошности пород. Поскольку интервал времени между главными циклами тектонегенеза составляет примерно 100 млн. лет (Штилле, 1964), то для того, чтобы удовлетворить этому порядку в выражении (II.45) для нижней мантии, мы должны принять h = 1027 пуаз, тогда t будет равно 1015 с, или 108 лет.

Таким образом, верхний предел вязкости нижней мантии будет оцениваться величиной h = 1027 пуаз. Эта величина больше соответствует физическим параметрам нижней мантии и общему, как мы увидим далее, инертному ее состоянию.

Термодинамическое состояние недр. Давление и температура внутри Земли представляют для нас наибольший интерес. Эти параметры, будучи независимыми, в свою очередь, контролируются массой тел; в данном случае массой Земли. Это следует из формул теории гравитационного потенциала (см. гл. II, § 3):

; ; .

Формулы действительны в предположении однородной Земли со средней плотностью r = 5,52 г/см3. В таком случае давление нарастает с глубиной по квадратичному закону:

, где атм.

Оно изменяется от 0 на поверхности до 1,73×106 атм. в центре планеты. Однако в реальной модели, вследствие концентрации массы к центру Земли, значение g уменьшается медленней. Поэтому давление будет здесь выше теоретического значения почти в два раза 3,6×106 атм. (Жарков, 1978). Для более точных расчетов используются данные сейсмологии об изменении скоростей продольных Vр и поперечных Vs волн внутри Земли и вычисляют параметр Ф:

,        (II.17)

где К – модуль сжатия. Используя параметр Ф, можно определить изменение Dr с глубиной:. Поскольку , исходя из обоих выражений DР, получим уравнение для определения приращения плотности с глубиной внутри Земли: . Полученное выражение тождественно уравнению Адамса-Вильямсона (II.17). Теперь, зная распределение плотности Dr, можно найти закон изменения давления Р = Р(r). Поскольку сила тяжести g определяется выражением , то становится ясно, что давление функционально связано с массой планетного тела. Чем больше эта масса, тем более высокое давление будет развиваться в ее недрах.

Как эти параметры связаны с температурой? Напомним физический смысл температуры. Это скорость и амплитуда колебания атомов или ионов относительно своего состояния равновесия. Чем выше энергия колебаний, тем выше температура. Состояние покоя атомами и ионами достигается при абсолютном нуле Кельвина (-273,16°С). Вывод из состояния равновесия осуществляется за счет изменения давления и собственного объема тела. Уравнение состояния оценивается выражением Р = Р(V,T). Таким образом, внутренняя энергия тела определяется потенциальной энергией его атомно-молекулярной решетки Uп и кинетической энергией теплового движения атомов или ионов возле состояния равновесия Uк: Е = Uп + Uк. Величина Uп зависит от объема V и давления Р; Uк – от давления Р, объема V и температуры Т:

Е(V,T) = Uп(V) + Uк(V,T). В соответствии с этим выражением и давление Р также состоит из потенциальной части Рп, зависящей от объема V и, следовательно, от массы М космического тела, т.е. V = M/r и кинетической части Рк, характеризующей тепловое движение: P = Pn(V)+

+ Pk(V,T). Уравнение состояния имеет вид:

,

где R = 8,3114×107 эрг/град×моль – газовая постоянная; Т – абсолютная температура Кельвина; А – средний атомный вес; g(r) – параметр Грюнайзена (функция плотности).

Вклад теплового давления, возникающего из-за тепловых колебаний атомов, в полное давление в условиях планетных недр не превышает 10 – 20% (Жарков, 1978). Поэтому закон изменения давления в недрах планет в основном определяется первым слагаемым уравнения состояния Р(r, 0), называемым нулевой изотермой. По приведенной ниже табл. II.4 можно получить представление об изменении плотности в зависимости от давления для различных космохимических элементов и соединений.

Таблица II.4

Плотность в зависимости от давления в атм. для космохимических элементов и соединений, г/см3

Р, бар Н2 Н2О SiO2 (стишовит) Аl2O3 FeO Fe
0,089 1,516 4,287 3,988 5,907 8,311
103 0,112 1,552 4,2884 3,9896 5,911 8,317
104 0,170 1,622 4,291 4,004 5,947 8,369
105 0,320 1,997 4,390 4,128 6,240 8,797
106 0,694 3,126 5,300 5,070 7,962 11,041
107 1,83 6,607 9,795 9,638 13,996 17,620
108 5,79 17,061 23,769 23,497 32,600 38,637

На рис. 10 (с. 34) показано изменение давления Р и силы тяжести внутри Земли. Давление постепенно возрастает от 0 на поверхности до 3,6×106 атм. в ядре. Сила тяжести в мантии постоянна, а с границы внешнего ядра (2900 км) закономерно уменьшается до нуля в центре земного ядра.

Зависимость температуры плавления Тпл для химически однородных веществ от давления была впервые показана Клаузиусом и Клайпероном:

,

где L – скрытая теплота плавления; V1 и V2 – объемы жидкой и твердой фаз.

Для ядра и оболочки градиент температуры рассчитывался по формуле:

,

где a – объемный коэффициент теплового расширения; Ср – удельная теплоемкость. Характерный градиент Т для ядра равен

К/км.

Отсюда на границе внешнего ядра и мантии температура равна 3700 К. Рассчитанные по данной формуле температуры по оболочкам Земли приведены в табл. II.5.

Таблица II.5

Значения термодинамических величин оболочек в земном ядре при распределении температур (по Жаркову, 1978)

Вдоль адиабатического градиента Вдоль кривой плавления
Глубина, км Т, К Глубина, км Т, К
100 1500 2900 4300
200 1575 3600 4900
600 1800 4400 5650
1000 1950 5000 6050
1800 2160 6371 6300
2900 2400

Представим себе атомную решетку, состоящую из одинаковых ионов, окруженных отрицательными электронами. Под действием высокого давления происходит смещение ионов от их равновесного положения. При больших давлениях среднеквадратичная амплитуда колебаний ионов относительно положения равновесия может стать настолько большой, что ионы начинают перекрываться и даже меняться местами. В этом случае решетка прекращает свое существование, а вещество из твердой фазы переходит в расплав.