Альфред Маршалл "Принципы политической науки" > Математическое приложение. - Замечание XXIII (кн.V гл.XIV)
Если вводится налог, совокупная величина которого выражается F(x), тогда, чтобы найти значение х, максимизирующее монопольный доход, мы имеем уравнение
,
и ясно, что,если F(x) -константа, как при взимании лицензионной пошлины, или варьирует в виде разности x * f1 (х) - x * f2 (х), как при взимании подоходного налога, данное уравнение имеет те же корни, как и при F(x) = 0. При геометрическом анализе проблемы мы видим, что если установлен фиксированный налог на монополию, достаточный, чтобы кривая монопольного дохода вся оказалась ниже Ox, a точка q лежала на новой кривой ниже L на втором графике в гл.XIV кн.V , тогда точка q', в которой новая кривая касается одной из ряда гипербол, находится как пересечение линии уО, опущенной с одной асимптоты, и Ox — с другой. Эти кривые можно назвать кривыми постоянных потерь.
При ставке налога на монопольный доход, равной m (m < 1), QQ' будет заменена кривой, каждая ордината которой находится как (1 — m) умножить на ординату соответствующей точки на QQ' т. е. точки, лежащей на той же абсциссе. Проецирование наглядно показывает нам, что касательные к корреспондирующим точкам QQ' в старом и новом ее положениях будут пересекать Ох в одной точке. Однако о гиперболах, расположенных в прямоугольной системе координат и имеющих одни асимптоты, мы знаем, что если провести линию пересечения гипербол, параллельную одной из асимптот, и касательные к ним в точках пересечения, то все эти касательные пересекут другую асимптоту в одной точке. Поэтому если g3' — точка на новой QQ', соответствующая точке g3, и если мы обозначим G точку, в которой общая касательная к гиперболе и к QQ' пересечет Ох, то Gg3' будет касательной к гиперболе, проходящей через g3'; т. е. g3' - точка максимального дохода на новой кривой. Геометрические и аналитические методы, изложенные в данном примечании, применимы к случаям, подобным тем, которые рассмотрены в последней части § 4 текста: налогообложения монопольного продукта.