Альфред Маршалл "Принципы политической науки" > Математическое приложение. - Замечание VI (кн. III гл. 6).
Если у — цена, при которой х товара может найти покупателей на данном рынке, и у = f (x) — уравнение для кривой спроса, тогда суммарная полезность товара равна , где а — потребленное количество.
Если, следовательно, количество b товара необходимо для существования, f (z) будет бесконечным или, по меньшей мере, неопределенно большим, поскольку значения х меньше, чем b. Поэтому мы должны исключить некоторое количество, необходимое для гарантирования жизни, и исчислить отдельно суммарную полезность той части предложения товара, которая является избытком над абсолютно необходимым количеством; она, конечно, равна .
Если существует несколько товаров, удовлетворяющих одну и ту же абсолютную потребность, как, например, вода и молоко - и то и другое утоляет жажду,- то для обычных условий жизни не будет большой ошибки, если мы условимся, что необходимое потребление обеспечивается исключительно одним из них — самым дешевым.
Как можно было заметить, анализируя дополнительную выгоду потребителя, предельную полезность денег отдельного потребителя мы предполагаем всегда неизменной. Строго говоря, мы должны принять в расчет тот факт, что если он потратил меньше денег на чай, то предельная полезность денег для него станет меньше и он сможет извлечь элемент дополнительной выгоды потребителя из покупки других товаров по ценам, которые сейчас не приносят ему такой ренты. Однако этими изменениями (второго порядка) ренты потребителя можно пренебречь, исходя из предпосылки, на которой покоится все наше доказательство, что его расходы на какой-то отдельный товар, например на чай, составляют лишь незначительную часть его совокупных расходов. (Сравни с § 3 гл. III кн. V.) Если по каким-либо причинам нам понадобится принять в расчет влияние его расходов на чай на стоимость денег для него, будет достаточно лишь умножить f (x) в рамках приведённого выше интеграла на функцию x*f (x) (т. е. суммы, уже затраченной им на чай), которая выражает предельную полезность денег для него, когда общая их сумма сократилась на эту величину.