Усилитель для направленного микрофона
1. ВВЕДЕНИЕ
2. ЭСКИЗНОЕ ПРОЕКТИРОВАНИЕ
2.1. Техническое задание
2.2. Эскизное проектирование
3. РАСЧЕТ КАСКАДОВ УСИЛИТЕЛЯ
3.1 Расчет оконечного каскада
3.2 Расчет активного RC-фильтра
3.3 Расчет каскадов предварительного усиления
4. ЗАКЛЮЧЕНИЕ
ПРИЛОЖЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
ВВЕДЕНИЕ
В настоящее время прослушивание разговоров уже не является прерогативой только спецслужб. В продажу поступает различная аппаратура для прослушивания и записи разговоров, хотя она является более простой, чем применяемая спецслужбами.
Данный усилитель предназначен для усиления сигналов принимаемых любым направленным микрофоном. Наибольшее усиление получается в диапазоне частот 300 - 3400 Гц, т.е. тех частот в пределах которых располагается человеческая речь. При использовании направленного микрофона помещенного в резонатор удается прослушивать речь объекта на расстоянии до 500 м. в условиях прямой видимости, а также с некоторого расстояния через железные двери и бетонные стены небольшой толщины.
Принципиальная электрическая схема приведена на рисунке 1 (см. Приложение).
2. ЭСКИЗНОЕ ПРОЕКТИРОВАНИЕ
2.1. Техническое задание на курсовой проект усилительного устройства
Спроектировать усилительное устройство, предназначенное для усиления сигналов речи поступающих от принимающего блока переговорного устройства. Получить мощность на выходе не менее 20 мВт для подключения громкоговорителя.
Усилитель должен обладать следующими характеристиками:
1. Коэффициент акустического усиления - не менее 65 дБ.
2. Напряжение питания - 9 В.
3. Выходная мощность - не менее 20 мВт.
4. Коэффициент гармоник - не более 7%.
5. Диапазон частот - не уже 100-5000 Гц.
6. Выходное напряжение на громкоговорителе - не менее 3,5 В.
7. Входное напряжение - не более 2 мВ.
8. Диапазон рабочих температур от -45?С до +50?С.
2.2. Эскизное проектирование
2.2.1. Выбор элементной базы
Для реализации данного усилителя в качестве элементной базы выберем следующие дискретные элементы:
I. В качестве активных элементов используем:
а)в выходном каскаде - малошумящие биполярные транзисторы - их преимущества перед ИМС - лучшая устойчивость к климатическим и различным внешним факторам; они более дешевы, чем ИМС;
- недостатки - меньший коэффициент усиления, больший уровень шумов;
б) в каскаде предварительного усиления - операционный усилитель, так как его коэффициент гармоник значительно ниже, чем у транзисторного каскада и больший коэффициент усиления;
в) в активном RC-фильтре - операционный усилитель.
2. Монтаж дискретных элементов осуществляется путем печатного монтажа.
2.2.2 Выбор типов каскадов
Реализуемый усилитель состоит из 4-х каскадов:
* - 2-х каскадов предварительного усиления - их задачей является усиление сигналов до величины достаточной для возбуждения выходного каскада;
* - выходного каскада - его задача усиление мощности сигнала до уровня достаточного для прослушивания на головных телефонах;
* - активного фильтра - его задача отсечение «шумовых» ВЧ составляющих, принимаемых микрофоном.
2.2.3 Выбор схемы оконечного каскада
Двухтактный оконечный каскад собран по бестрансформаторной схеме. Такой тип каскада характеризуется простотой схемы, отсутствием нестандартных деталей, высокими качественными показателями, более высокой стабильностью, чем у трансформаторных каскадов, малыми габаритами и весом. Недостатки бестрансформаторных каскадов - меньший коэффициент усиления по мощности, чем у трансформаторных каскадов, следовательно большая мощность, потребляемая от предоконечного каскада, и более высокий коэффициент нелинейных искажений. Применение более глубокой, чем в трансформаторных каскадах, отрицательной обратной связи позволяет снижать нелинейные искажения до величины, не превышающей нелинейные искажения в каскадах с трансформаторами.
Данный каскад работает в режиме класса АВ и имеет довольно высокий к.п.д. (порядка 70%). Суммарный ток плеч каскада находится как среднее за полпериода:
Jп.ср.=(2Jmк)/?
Выходная мощность отдаваемая транзисторами Р?=UmкJmк/2, а мощность питания Рп=ЕпJп.ср. Поэтому к.п.д. в режиме АВ:
Каскад слабо чувствителен к пульсациям питающего напряжения Еп, благодаря их компенсации в разностном токе. При пульсациях Еп токи покоя обоих плеч изменяются одинаково, поэтому их разность продолжает оставаться равной нулю.
Первой задачей синтеза является нахождение функции, с помощью которой можно построить фильтр. АЧХ фильтра, удовлетворяя условиям физической реализуемости и техническим требованиям, должна наилучшим образом приближаться к идеальной АЧХ. Процесс нахождения такой функции называется аппроксимацией. Любая физически реализуемая электрическая цепь имеет коэффициент передачи:
К(р)=Uвых(р)/Uвх(р). (2.2.4.1)
Поэтому задача аппроксимации состоит в том, чтобы из класса функций (2.2.4.1) выбрать такие, квадрат модуля которых наилучшим образом приближается к единице в пределах полосы пропускания и к нулю вне ее.
Критерием качества аппроксимации в данном случае служит ее монотонность, и наилучшей аппроксимирующей функцией будет та, которая обеспечивает наилучшую точность аппроксимации из всех монотонных функций класса (2.2.4.1) одинакового порядка. Монотонную аппроксимацию осуществляют методом Тейлора. При этом наилучшими являются функции, квадрат модуля которых выражается полиномами Баттерворта. По характеру аппроксимации она максимально плоская.
Второй задачей синтеза является реализацией найденной аппроксимирующей функции, т.е. определение на ее основе структурной (функциональной) схемы устройства, модуль коэффициента передачи которой удовлетворяет предъявляемым техническим требованиям и наилучшим образом приближается к идеальной АЧХ. В качестве критерия оптимальности может служить минимум числа элементов схемы, минимум чувствительности характеристик цепи к изменению во времени или технологическому разбросу величин ее элементов.
Следующей задачей синтеза является расчет элементов выбранной электрической цепи.
2.2.5. Выбор каскадов предварительного усиления
Каскад предварительного усиления представляет собой двухкаскадный усилитель, выполненный на базе ОУ с неинвертирующим включением. Для этого необходимы ОУ, имеющие неинвертирующий вход относительно входных сигналов и инвертирующий для подключения цепи обратной связи. Преимуществом такого включения является высокое входное сопротивление (примерно такое же, как входное сопротивление ОУ), что делает возможным подключение микрофона, для которых сопротивление нагрузки довольно высоко. Недостатком такого включения является возрастание собственных шумов усилителя.
Регулятор громкости ставится в цепь ОС входного каскада.
При смещении ползунка меняется уровень входного сигнала и происходит регулировка усиления путем изменения затухания входного сигнала.
При применении данной схемы регулировки усиления, изменяется только уровень выходного сигнала, а остальные параметры остаются неизменными.
3. РАСЧЕТ КАСКАДОВ УСИЛИТЕЛЯ
3.1. Расчет оконечного каскада
При построении данного двухтактного каскада используются два транзистора с близкими по величине параметрами. Исходными данными являются мощность, отдаваемая в нагрузку Рвых, и сопротивление нагрузки Rн. Расчет проведем для одного плеча каскада графоаналитическим методом.
Транзисторы выбираются по допустимой мощности рассеяния на коллекторе Ркmax и максимальной амплитуде коллекторного тока Iкmax.
В качестве пары транзисторов принимаем транзисторы МП16Б и МП38А.
По входной характеристике транзистора МП38А (рис. 3.1.1) определяем исходную рабочую точку: Uбэ0=0,145 В и Iб0=25*10-6А.
ЗАКЛЮЧЕНИЕ
Спроектированный и рассчитанный выше усилитель удовлетворяет всем требованиям технического задания.
Усилитель имеет коэффициент усиления около 70 дБ.
Коэффициент нелинейных искажений порядка 7 %.
Необходимо помнить, что микрофонный усилитель усиливает звуки, приходящие со всех сторон, и если соотношение сигнал/шум будет недостаточным, то нужно применять пространственные направляющие системы. При прослушивании человеческой речи за стенами, панелями, перегородками достаточно поместить микрофон в основание параболического рефлектора.
Дистанционное звуковое прослушивание необходимо вести с помощью дистанционных направленных микрофонов, имеющих узкую диаграмму направленности.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. АЛЕКСЕЕВ А.Г., ВОЙШВИЛЛО Г.В. Операционные усилители и их применение. - Москва, Радио и связь, 1989 г.
2. БОЛТАЕВ А.В., ГАДЗИКОВСКИЙ В.И. и др. Усилительные устройства на интегральных микросхемах. - Свердловск, издание УПИ, 1981 г.
3. ГОЛОВИН О.В., КУБИЦКИЙ А.А. Электронные усилители. Москва, Радио и связь, 1983 г.
4. НОГИН В.Н. Аналоговые электронные устройства. - Москва, Радио и связь, 1992 г.
5. ОСТАПЕНКО Г. С. Усилительные устройства. - Москва, Радио и связь, 1989 г.
6. Проектирование усилительных устройств. Под редакцией ТЕРПУГОВА Н.В. - Москва, Высшая школа, 1982 г.
7. ЦЫКИНА А.В. Проектирование транзисторных усилителей низкой частоты. - Москва, Связь, 1968 г.
8. Транзисторы для аппаратуры широкого применения. Справочник. Под редакцией ПЕРЕЛЬМАНА Б.Л. - Москва, Радио и связь, 1981 г.
9. ТЕРЕЩУК Р.М., ТЕРЕЩУК К.М. и др. Малогабаритная радиоаппаратура. Справочник радиолюбителя. - Киев, Наукова думка, 1971 г.