Понятия и элементы теории научно-технических прогнозов

Содержание
Введение
Глава 1. Понятия и элементы теории научно-технических прогнозов
(1. Научно-технические прогнозы
(2. Классификация прогнозов
Глава 2. Современные методы научно-технического прогнозирования
(1. Методы экстраполяции
(2. Методы моделирования
Заключение
Список используемой литературы

Введение.
Вам не приходилось вести машину по незнакомой горной дороге( Если скорость движения велика, а машина тяжело гружена, успешно управлять ею невозможно без информации о предстоящем участке пути, без компаса и карты. Интуиция многоопытных рулевых наук еще позволяет избегать аварийных положений, но уже весьма частыми и типичными являются случаи, когда в какой-то отрасли исследований (проехали( поворот на путь, наилучшим образом ведущей к цели, или не набрали предварительную скорость, необходимую для начавшегося в мировой науке очередного крутого подъема.
В области технического творчества и непосредственно в сфере производства не менее характерна ситуация, когда на недавно построенных шахте или заводе обнаруживаются (узкие( места, требующие реконструкции вновь введенного в строй предприятия. Причина этого – несоответствие ряда воплощенных решений новой технике и технологии, появившимся за 10-12 (а иногда и более) лет, отделяющих стадию проектирования от завершения строительства крупного современного предприятия.
Наличие информации о предстоящих потребностях, возможных результатах и последствиях управляющих воздействий – необходимая предпосылка оптимального управления любой системой. Именно поэтому непременным элементом всякого и каждого вида целесообразной деятельности человека является более или менее развитое предвидение результатов предпринимаемых действий. (...Самый плохой архитектор,– отмечал К. Маркс,– от наилучшей пчелы с самого начала отличается тем, что , в своей голове(1. В особенности прогностическая функция присуща научным системам знания. Однако следует сразу отметить, что многолетний опыт реализации наукой этой ее функции относится почти исключительно к объектам научного изучения. Что же касается предвидения будущего самой науки и, в частности, организационных форм ее жизнедеятельности, то такого рода прогнозирование стало возможным лишь на основе научного подхода к изучению самой науки и научно-исследовательской деятельности. Научно-техническая прогностика является одним из важнейших разделов современного науковедения, создающего теоретические основы управления научно-техническим прогрессом.
Прогностика как наука возникла в наши дни в условиях научно-технической революции. Но как область поиска она берет начало в глубокой древности. (Прогностика( – термин древнегреческий. Напомним о написанной более 2 тыс. лет назад книге великого древнегреческого врача Гиппократа (Прогностика(. В наиболее общем смысле это понятие обозначало искусство формулирование диагнозов и прогнозов процессов и явлений. В отличие от предсказаний оракулов и пифий прогностика того времени касались в основном способов определения, различных болезней, их протекания и исходов. Искусство предвидения базировалось только на интуиции прорицателей, а чаще – на приметах, догадках и других столь же (научных( основаниях.
Необходимость предвидеть будущее осознавалось во все времена. Но особенна велика потребность в прогнозах в наш век – век стремительных темпов общественного развития, гигантского взлета науки и техники, бурного развития производства. Прогнозов, основанных на интуиции, сейчас, разумеется, недостаточно. Необходимо прогнозирование, базирующееся на объективных закономерностях, на переработке информации по строгим правилам логики и математики с применением ЭВМ. Современная прогностика – это система научного знания. Поэтому, заимствовав у древних сам термин мы тем не менее можем говорить о новом рождении прогностики.
История хранит множество примеров гениальных предвидений выдающихся мыслителей и новаторов техники всех времен и народов. Так, еще в условиях феодального строя, заглядывая более чем на шесть столетий вперед, английский ученый Роджер Бэкон предсказал появление и широкое распространение в будущем таких видов техники, как средства самоходного транспорта для передвижения по суше, воде и воздуху.
Гениальный итальянский ученый, инженер и художник Леонардо да Винчи предвосхитил идею колебательного движения как основу для объяснения природы световых, звуковых и магнитных явлений. Им же были сделаны казавшиеся многим современникам беспочвенно фантастическими эскизы проектов ткацких станков, печатных машин, подводных лодок и летательных аппаратов тяжелее воздуха.
Корифей отечественной науки, академик В.И.Вернадский, одним из первых предвидел последствия начавшегося в то время проникновения в тайны атома. Он говорил: (Перед нами открылись источники энергии, перед которыми по силе и значению бледнеют сила пара, сила электричества, сила взрывчатых химических процессов. Мы, дети XIX века, на каждом шагу свыкались с силой пара и электричества, мы знаем, как глубоко они изменили и изменяют всю социальную структуру человеческого общества, больше того – как глубоко они меняют более мелкую бытовую обстановку человеческой личности... А теперь перед нами открываются в явлениях радиоактивности источники атомной энергии, в миллионы раз превышающие все те источники сил, какие рисовались человеческому воображению(. Впоследствии, развивая свои мысли о будущем использовании атомной энергии, Вернандский добавил: (Это может случится через столетие. Но ясно, что это должно быть. Сумеет ли человек воспользоваться этой силой, направить ее на добро, а не на самоуничтожение( Ученые не должны закрывать глаза на возможные последствия их научной работы, научного прогресса. Они должны чувствовать себя ответственными за последствия их открытий. Они должны связать свою работу с лучшей организацией всего человечества( 1.
Прогнозы научно-технического прогресса – дело весьма сложное и ответственное. Оно требует не только глубокого проникновения в сущность и закономерности развития науки и техники, но и ясного представления о взаимодействии их с общественными условиями жизни людей.

Глава 1. Понятия и элементы теории научно-технических прогнозов.
(1. Научно-технические прогнозы.
Ныне известны различной направленности прогнозы( ресурсов, общественных потребностей, промышленного потенциала, развития социальных условий, демографические, комплексные прогнозы развития экономики и другие, имеющие тенденцию складываться во взаимосвязанную систему представлений.
Научно-технические прогнозы непосредственно примыкают к системе прогнозов социально-экономических процессов. Они с полным основанием могут трактоваться как ее подсистема, сохраняя при этом всю свою специфику, вытекающую из своеобразия объектов, целей и методов прогнозирования.
Тесная связь научно-технического прогнозирования с экономикой, а через нее с социологией выражается не только в использовании элементов социально-экономического анализа при оценке исходных позиций прогнозирования, в процессе его и при выборе результирующих вариантов, но и прежде всего в том, что сам прогнозируемый научно-технический прогресс является определяющим фактором эффективности процесса общественного производства.
Существенные отличия научно-технического прогноза от прогноза экономического развития находятся на уровне различий между понятиями наука и техника, с одной стороны, и промышленность, сельское хозяйство, медицина и т.п. – с другой.
Типология научно-технических прогнозов весьма представительна. Можно, например, классифицировать прогнозы науки и техники по масштабам, уровню комплексности, времени упреждения, по регионам и т. д. Существенно при этом различать и научное предвидение таких взаимосвязанных объектов( развитие науки как системы знаний; развитие организационной системы науки; развитие техники, в котором выделяют в свою очередь уровень промышленно освоенных технических средств и уровень новых технических разработок.
Особое место в исходных позициях прогностики занимает вопрос о возможности (в принципе) прогнозировать научные открытия. Крайняя точка зрения на этот вопрос сводится к попыткам поставить знак равенства между предвидением открытия в науке и самим фактом открытия нового явления или закона. На этом основании формулируется (диагноз прогнозу(, отрицающий само право на существование прогнозов в науке.
Анализ подобного рода (диагнозов( и самих процессов познания, реализуемых естествоиспытателями, говорит как раз об обратном( в абсолютном большинстве случаев научному открытию обязательно предшествует (с разными интервалами упреждения – от минут до столетий) возникновение прогнозной гипотезы в возможном открытии. Известны и примеры, когда на основе строго научных систем представлений о закономерных причинно-следственных связях между явлениями объективного мира ученым удавалось высказывать прогнозные идеи о возможном существовании и возможных свойствах неизвестных астрономических объектов, химических элементов, биологических видов и др. Последующий ход истории науки приводил к действительному открытию такого рода объектов, и авторами открытий считались, естественно, те, кто реально установил, доказал или продемонстрировал их существование.
Случаи предвидения научных открытий – весьма редкое явление. Гораздо чаще ученые предвидят назревающий (прорыв( на том или ином участке научного фронта, опыт и интуиция позволяют им судить о перспективности взаимодействия различных научных направлений, о взаимооплодотворении их идеями, методами и новыми возможностями. Эти предвидения лежат в сфере компетентности и ответственности прежде всего тех или иных специальных наук, на опыт которых опирается науковед-прогнозист. Научно-техническое прогнозирование выработало и осуществляет специальные процедуры сбора, анализа и синтеза подобного рода объективной и интуитивной информации, дополняя ее специальными сведениями организационно-научного характера.
Быстро прогрессирующие возможности современных систем переработки информации, в особенности реализация на ЭВМ методов эвристической самоорганизации моделей, открывают новые многообещающие перспективы на этом пути содействия подлинным творцам прогресса науки.
(Значит ли сказанное выше, что кибернетика научится вскоре предсказывать открытия, а это значит, что и планировать их( – ставит вопрос один из теоретиков кибернетики, А.Г.Ивахенко, много работающий в области методики и практики научного прогнозирования. – Речь может идти лишь о прогнозировании эффекта будущих открытий, их влияния на общий научный и технический потенциал. Что касается дат открытий, то в самом деле их можно предсказать и даже с достаточно высокой точностью. Нельзя предсказать сути открытия, но его влияние на ход прогресса – можно... в моделировании всегда то, что кажется невозможным, становится возможным, если подняться на более высокий уровень описания моделируемого процесса на некотором языке более высокого порядка – так называемом (метаязыке( – и перейти к объективным методам самоорганизации. При этом учитывается масса факторов, неизвестных человеку-заказчику( экономических, социальных и др.(1. И далее в той же монографии он дает развернутое изложение методов, критериев и алгоритмов открытия законов, поведения объектов и систем физической природы.
Обобщая опыт прогнозных разработок Института кибернетики, в том числе в использовании данных фундаментальных наук для прогнозирования перспектив научно-технических предложений, академик В.М.Глушков констатирует возможность (определенно утверждать, что нет никаких препятствий к тому, чтобы решать и обратную задачу – выдвигать вопросы и проблемы для научного поиска в области фундаментальных исследований и таким образом осуществлять прогноз дальнейшего их развития. Если верно, что результаты фундаментальных исследований в настоящее время являются основой для решения прикладных вопросов, то верно и обратное – многие достижения фундаментальных исследований невозможны без решения специальных прикладных проблем(2.
Связь между различными объектами прогнозирования носит сложный диалектический характер, ввиду чего на практике деление научно-технических прогнозов на прогнозы науки и прогнозы техники нередко оказывается весьма условным. Развитие научных представлений может привести к формулировке новых взглядов на будущее технических средств, а долгосрочный прогноз направлений развития техники требует, как правило, учета тенденций развития науки как системы знаний.
(2. Классификация прогнозов.
Изложим далее функциональную классификацию научно-технических прогнозов как инструмента управления развитием науки и техники. В основе ее положена идея, вытекающая и принятого определения прогноза как комплекса взаимосвязанных оценок( целей, путей их достижения и потребностей в ресурсах. Каждый из типов прогнозов является фактически результатом специального этапа прогнозных работ, использующих свои специфические методы.
Прогноз первого типа, опирающийся на познание тенденции и закономерности, на накопленный опыт конкретных наук, призван выявить и сформулировать новые возможности и перспективные направления научно-технического развития. Этот тип прогноза в научной прогностике назван исследовательским прогнозом (ИП). Его наиболее трудный и ответственный, чаще всего заключительной фазой является оценка гипотетической результативности или, обобщенно говоря, значимости возможных вариантов развития. Полученные таким образом сведения являются существенной частью формируемой с участием научной прогностики концепции будущего науки и техники.
Второй тип научно-технического прогноза назван программным прогнозом (ПП). Он исходит из познанных общественных потребностей, тенденций и закономерностей научно-технического развития, а также данных, полученных ИП. Он призван придать этим знаниям прикладной характер( сформулировать программу возможных путей, мер и условий для достижения целей и решения задач развития науки и техники. Сформулировав гипотезу о перспективных для данных условий возможностях взаимного влияния различных факторов, ПП (чаще всего на заключительной своей стадии) стремится дать оценку гипотетических сроков и очередности достижения различных возможных целей. Тем самым ПП завершает начатую на этапе ИП формулировку возможностей развития.
Уместно отметить, что если ИП имел своим объектом намечающиеся внутренние возможности научно-технического развития, то ПП имеет дело больше с проблемами, обусловленными потребностями практики (техника, медицина, сельское хозяйство и т.п.).
Так, прогноз складывающихся перспектив развития кибернетики, тенденций роста быстродействия ЭВМ, увеличения объема их памяти расширения диапазона логических возможностей – это типично исследовательский прогноз. Его основная цель – раскрыть гамму принципиально возможных перспектив. С другой стороны, прогноз, ранжирующий по оси будущего времени ряд важнейших ожидаемых событий прогресса кибернетики и вычислительной техники, фиксирующий наиболее перспективные связи этого процесса и возможные пути его реализации,– это типично программный прогноз.
Организационный прогноз (ОП) основывается на знаниях и представлениях об общих закономерностях и тенденциях развития науки (как организационной системы), в том числе полученных ИП и ПП. Он исходит из представлений о наличных экономических ресурсах и накопленном научном потенциале. ОП призван сформулировать обоснованную гипотезу относительно объемов и состава ресурсов, требующихся, чтобы теми или иными путями (ПП) достигнуть тех или иных целей (ИП). Понятие ресурс трактуется не только в смысле время, деньги, люди, а также в случае необходимости и как комплекс организационных и социально-экономических предпосылок эффективной реализации прогнозируемого состава ресурсов.
Обычно наиболее трудной и ответственной фазой ОП является оценка гипотетических размеров требуемой финансовой поддержки различных программ исследований и разработок.
Выступая в комплексе, охарактеризованные выше три этапа прогнозирования взаимно дополняют друг друга, предоставляя в распоряжение принимающих решения особо ценную систему данных. Заметим, однако, что мера управляемости ходом реализации прогнозов, возможности непосредственного влияния на них организационных и экономических факторов и соответственно возможности предвидения хода развития существенно различны. В этом отношении ОП > ПП > ИП.
Чтобы логически завершить приведенный выше пример, укажем в качестве иллюстрации на возможность получения комплексного прогноза ЭВМ будущего. В свое время на смену ламповых ЭВМ первого поколения пришли полупроводниковые ЭВМ второго поколения. Ныне их закономерность меняют ЭВМ с интегральными схемами высоким быстродействием и другими важными признаками и существенно новыми свойствами. Научно обоснованный прогноз ЭВМ четвертого и частично пятого поколений должен дать оценки относительной значимости различных необходимых для их создания событий, представления о вероятности свершения таких событий во времени, а также ориентировочную оценку размеров и структуры относящихся к этой проблеме ресурсов.
В таком комплексном прогнозе важное место заняла бы аргументация организационно-технических мер( исключение ряда промежуточных стадий развития, параллельное осуществление некоторых других событий, использования новых возможностей резкого повышения (интеллектуальной мощи( ЭВМ (например, агрегатирование, создание однородных вычислительных систем, территориальной сети вычислительных центров и др.). На основе этих данных можно было бы попытаться спланировать стратегию ускоренного достижения высших уровней научно-технического прогресса в этой важной области.
Каждый научно обоснованный прогресс содержит как бы сплав времен( прошлого (тенденции развития), настоящего (потребности и возможности). В зависимости от того, на какой срок в будущее делаются прогнозы, они имеют различный характер, существенно отличаются по достоверности и по-разному используются в практике принятия решений.
В научно-технической прогностике можно довольно четко выделить три типичных интервала упреждения, названных нами эшелонами прогнозирования. Прогнозы первого эшелона рассчитаны обычно на срок до 15-20 лет. При сложившихся темпах развития за указанный период произойдет одно-два удвоения общей численности выполненных научных работ, удвоится количество технических средств производства, окончится срок действия большинства нынешних патентов и т. д. Очень важным обстоятельством является то, что в этот интервал времени укладываются типичные и имеющие тенденцию к сокращению сроки, в течение которых установленные наукой факты, явления и принципы переходят из фундаментальных наук в прикладные, оттуда – к разработчикам и через опытно-промышленную проверку – к стадии массового производственного использования основанных на них технических средств.
Существенно также и то обстоятельство, что за этот период времени на передовую линию научно-технического прогресса выходит новое поколение специалистов, составляющих к концу периода абсолютное большинство по отношению к тем, кто был участником работ в его начале. За подобный отрезок времени в прошлые годы происходило два удвоения численности ученых и по крайней мере три раза удваивалась численность инженерно-технических работников.
Прогнозы этого эшелона исходят обычно из вполне определившихся в настоящее время (во всяком случае теоретически) возможностей научно-технического прогресса. В них присутствуют не только качественный (содержательный), но и, как правило, количественные оценки.
Прогнозы второго эшелона рассчитаны на срок от сегодняшнего дня до 40-45 лет в будущее. Это время упреждения характеризуется удвоением большей части принятых в современной науке концепций, теорий и трактовок. За это время произойдут удвоение численности населения мира (~35 лет) и полная смена поколений творцов научно-технического прогресса (~40 лет – оценка длительности периода самостоятельной творческой деятельности человека).
В прогнозах, относящихся к этому периоду (первое десятилетие 21 века), количественные оценки все чаще уступают место качественным. Видимыми ограничительными пределами подобных прогнозов не редко считают уже не экономические возможности, а обычно лишь выкристаллизовавшиеся к настоящему времени фундаментальные законы и принципы естествознания. К тому же ученый, вырабатывающий прогноз такой дальности, уже не может ограничится представлениями, присущими его конкретной отрасли знания (эти представления будут существенно обновлены), а обязан базироваться на более широкой системе научных представлений.
Прогнозы третьего эшелона ориентированы на срок от настоящего времени до ста лет, а иногда и далее в будущее. Такие прогнозы носят, как правило, чисто гипотетический характер. Отдавая себе отчет, что творцы научно-технического прогресса столь отдаленного будущего будут исходить из выработанной ими системы научных представлений, неизвестной нам пока во многих своих существенных аспектах, современный прогнозист в этом случае полагается скорее на свое мировоззрение и творческую фантазию, чем на определенную систему естественнонаучных представлений.
Количественные оценки здесь, как правило, отсутствуют, а качественные оценки и предположения ограничиваются лишь рамками наиболее общих законов логики, мировоззрения и естествознания.
Любые прогнозы всегда содержат в себе элементы предположительности. Жизнь, успехи наук, возможностей и потребностей практики вносят в них каждый день существенные коррективы. На их судьбу в решающей степени влияют развитие социальной жизни общества и раскрытия новых тайн природы. Все это заметно определяет дискуссионный характер долгосрочных прогнозов третьего эшелона. Если бы авторы прогнозов научно-технического прогресса не ограничивали размах своей мечты определенными рамками сложившихся научных представлений о развитии общества, экономики, естествознания и техники, их выводы лишены были бы для нас доказательной силы, т. е. научной ценности. Обзор литературы, посвященной научно-техническим прогнозам, позволяет выделить три основные группы таких представлений, оказывающих определяющее влияние на степень реальности научного предвидения( а) научные представления о социально-экономической целесообразности и хозяйственной возможности реализации прогнозируемых научно-технических решений; б) законы и принципы естествознания, значительная часть которых нередко называется, по меткому выражению Джорджа Томпсона, (принципами невозможности(; в) наиболее общие законы природы и развития общества, формулируемые обычно в виде основ мировоззрения ученого.
Авторы прогнозов первого эшелона, как правило, стремятся учитывать все эти три группы пределов. Этим и объясняется в большей степени их относительно высокая точность. При переходе к прогнозам второго эшелона авторы в известной мере абстрагируются от условий, накладываемых экономическими категориями, а в прогнозах третьего эшелона учитывают к тому же историческою относительность ряда ныне принятых положений науки.
Прогнозы всегда имеют гипотетический характер. Делая на основании анализа информации о прошлом и настоящем выводы о будущем, прогнозист не может учесть многие существенные факторы, которые возникнут и будут влиять на развитие прогнозируемого процесса в будущем. При этом из многолетнего опыта науки известно, что чем больше удастся ей решить проблем, тем большее количество новых задач возникает перед исследователями.
Наша итоговая оценка оптимальной дальности интервалов упреждения, сформированная на основе всех рассмотренных выше данных, состоит в том, что для конкретизированных прогнозов с преобладанием оценок прикладных научно-технических решений Топт=10-15 лет, а для более обобщенных прогнозов научно-технического развития в связи с наличными природными ресурсами и социально-демографическими процессами – Топт=35-40 лет. Естественно, что разные области и объекты прогнозирования требуют различной глубины прогнозирования. Периодизацию эшелонов прогнозирования не следует отождествлять с выбором конкретного горизонта прогнозирования применительно к а) своеобразию объекта, прогноза; б) специфике управленческих задач, ради которых предпринято само это прогнозное исследование; в)методам, которыми будет производиться разработка данного прогноза.
Современные представления научно-технической прогностики по этому вопросу с учетом последних данных об управленческих требованиях и специфике объекта (пункты а и б) сведены в табл. 1.
Таблица 1

Области и объекты прогнозирования
Требуемая глубина прогнозных оценок, лет
Обычно достигаемая глубина, лет
Объем доступных природных ресурсов
Нововведения и технические средства с сильно выраженными социальными последствиями (автоматизация, массовые средства связи, транспорт, проекты городов и др.)
Ядерная энергия
Космические программы
Средства вооружения
Национальная экономика
Массовое и крупносерийное производство технических средств (например, в электронике, химии и др.)
Производство новых потребительских товаров
50 и более
30-40
25-30
20-30
20-25
20-25
10-20
5-10
25-35
8-12
12-15
10-12
10-12
7-10
7-10
3-5

Из приведенных в таблице сведений виден разрыв между требуемой и достигаемой ныне глубиной прогнозирования. Отсюда вытекает актуальность совершенствования методов научно-технической прогностики.
Что касается определения краткосрочных, среднесрочных и долгосрочных прогнозов с позиций специфики методов прогнозирования (пункт в), то это может быть сделано, например, на основе корреляционных соображений. Если взять за основу время сдвига в ряду данных стационарном случайном процессе, в пределах которого автокорреляционная функция существенно отличается от нуля (так называемое время когерентности – Тк), то прогнозы с упреждением (0,1-0,2) Тк относят к краткосрочным, прогнозы с упреждением (0,2-1,0) Тк к среднесрочным и с упреждением >Тк -к долгосрочным.
При прогнозировании на основе патентной информации исходным обстоятельством для периодизации времени упреждения будет оценка длительности жизненного цикла данного класса технических средств и т. д.
Практически всегда следует принимать во внимание все группы указанных обстоятельств.

Глава 2. Современные методы научно-технического
прогнозирования.
(1. Методы экстраполяции.
Научная прогностика насчитывает в настоящее время около 140 различных по уровню, масштабам и научной обоснованности методов и приемов прогнозирования научно-технического развития. Главные направления, в которых идет развитие методического обеспечения прогнозных работ, состоят(
* в углубленной теоретической и прикладной разработке нескольких групп методик, отвечающих требованиям разных объектов и различных видов прогнозных работ;
* в разработке и реализации на практике системных способах и процедур использования различных методических приемов в ходе одного конкретного прогнозного исследования;
* в поиске путей и способов алгоритмизации методик и реализации их с использованием современных ЭВМ.
Наиболее давняя гипотеза будущего – это представление о нем как о прямом и непосредственном продолжении настоящего. На предположении о неизменности или хотя бы относительной стабильности наличных тенденций развития базируются все приемы экстраполяции. Экстраполироваться могут и тенденции, формулируемые на описательном уровне, но чаще всего это делается относительно статически складывающихся тенденций изменения тех или иных количественных характеристик науки, техники и организационной системы науки.
Степень реальности такого рода прогнозов и мера доверия к ним в решающей степени обусловливаются аргументированностью выбора пределов экстраполяции и стабильностью соответствия (измерителей( сущности рассматриваемого явления. Эти измерители зачастую оказываются несопоставимыми в больших масштабах времени – второго и третьего эшелонов прогнозирования. В подобных случаях экстраполяция нередко приводит к спорным или даже абсурдным результатам. Вот несколько примеров.
За пределами верхней границы второго эшелона прогнозов экспонента роста численности ученых проходит через точку ожидаемого количества населения Земли. Если экстраполировать неизменной общую тенденцию роста скоростей транспортных средств, то уже к концу века можно было бы получить значения, близкие величине скорости света.
Предварительная формулировка обоснованных логических гипотез, проникновение в (физическую( сущность экстраполируемых процессов, вскрытие на основе содержательного анализа причинно-следственных отношений в изучаемых с помощью статистики явлениях – все это обязательные условия корректного, а зачастую элементарно грамотного использования аппарата математической статистики. Уместно напомнить предупреждение, сделанное статистиком с мировым именем Ф. Миллсом( (Статистическое доказательство само не устанавливает причинность. Статистика устанавливает степень ковариации, но существуют ли причинные связи или нет и каким путем они развиваются, не может быть установлено статистикой(1 В случае использования методов экстраполяции в научно-техническом прогнозировании прямым следствием этого требования является необходимость учета факторов общественного спроса на новые научно-технические разработки, оценки влияния на развитие прогнозируемого объекта политики цен и специфических в разных странах социально-экономических и производственных условий. Так, например, статистика технических решений в сухогрузном морском транспорте Японии и ее основных торговых партнеров явно говорит о тенденции к созданию сверхтоннажных судов. Конъюнктура ввоза и вывоза сырья морским транспортом России принципиально отлична от ситуации, имеющей место в Японии. Это обстоятельство делает неправомерным распространение выводов их экстраполяции подобных данных на соответствующие технические решения российского судостроения.
Еще одним важным методическим обстоятельством рассматриваемых приемов прогнозирования является выбор соотношения глубины ретроспектабельности экстраполируемой тенденции (базы экстраполяции) и дальности экстраполируемого интервала. А.С.Консон считает возможным брать их равными. В.А.Лисичкин рекомендует (выбирать срок прогноза равным 1/3 отчетного ряда данных(. Последнее предложение нам представляется более приемлемым, хотя обосновано оно преимущественно эмпирически. Полезным ориентиром и в этом случае будет являться предварительная качественная оценка стабильности процесса и характера определяющих его закономерностей.
Прогноз по методу экстраполяции состоит обычно в том, что в полученную тем или иным способом зависимость y=f(t) представляют интересующие нас даты t и находят соответствующие значения y, которые и принимают за прогноз на данный год. При этом для обоснования прогноза необходимо доказать( что закон (тенденция), найденный на известном промежутке, не изменится и вне его в определенных границах; что сами параметры качественно не изменятся.
Для доказательства обычно используют в качестве предпосылки инерционность прогнозируемой системы. Считают, что в сложных системах изменения происходят сравнительно медленно, поэтому можно ожидать, что ошибки экстраполяции за малые отрезки времени будут незначительными. Такая предпосылка не является достаточно сильной.
Для прогноза часто бывает интересным и важным не столько предсказать конкретное значение изучаемого параметра в таком-то году, сколько своевременно фиксировать объективно намечающиеся сдвиги и симптомы изменений в тенденциях развития.
Подлинно научное отношение к экстраполяции тенденций ничего общего не имеет с фатализмом и слепым преклонением перед статистической оценкой. Даже дальняя экстраполяция до (точек абсурда( – до невозможных ситуаций – не такое уж бессмысленное занятие, если ее результаты рассматривать не как собственно прогноз, а как свидетельство более или менее остро назревших потребностей изменить сложившуюся ранее тенденцию. Кроме того, при экстраполяции системы взаимосвязанных параметров имеется возможность оценить чувствительность конечных данных к равным по масштабу изменениям различных параметров. На основании полученных таким образом сведений формулируются прогнозные рекомендации по управлению процессом развития.
Методом экстраполяции прогнозировались рост объемов научно-технической информации, размеры средств, вкладываемых в науку, и другие вопросы. Заметим, что полученные при этом конкретные оценки логических пределов роста тех или иных характеристик, а также значения разрывов между взаимообусловленными показателями послужили основанием для принятия долгосрочных решений относительно будущей научной политики.
Одно из таких решений – прогнозируемое потребное опережение в темпах роста производительности труда персонала, занятого в научных исследованиях, по сравнению с темпами роста его численности.
Если рассматривать экстраполяцию не как самоцель, а как начало анализа тенденций и прогнозирования, то следует признать, что возможности этого вида методов весьма многочисленны, а практика такого прогнозирования обширна, хотя и связана в большинстве случаев с прогнозами первого эшелона. Для предвидения более отдаленных свершений научно-технического прогресса, как правило, требуется дополнение этого подхода более глубоким проникновением в логику научно-технического развития и будущие возможности фундаментальных естественных наук.
(2. Методы моделирования.
Весьма большие надежды возлагают прогнозисты на решение проблемы моделирования существенных процессов и явлений научного развития. Пристального внимания заслуживают некоторые существующие методы прогнозирования, использующие приемы моделирования. Наиболее давними традициями обладает в этом отношении группа методов прогнозирования по исторической аналогии.
На основе изучения внутренней логики развития конкретной научной дисциплины исследователь конструирует соответствующую ее историко-логическую модель. Затем в соответствии с этой моделью прогнозируется разрешение определенных коллизий в ситуациях, обладающих с ней общностью свойств. Популярность логических моделей-образов, конструируемых с помощью метода исторической аналогии, держится не только на традициях, но и на многих хорошо известных историкам естествознания актах преемственности в развитии научных принципов и идей.
Если бы метод исторических аналогий был так универсален, как мы его нередко склонны воспринимать, то научно-техническую политику формировали бы историки, а не специалисты, знающие наилучшим образом современный опыт.
Вместе с тем для прогнозирования и планирования новой техники и новых научно-исследовательских работ весьма важно количественно определенно оценить объем, полноту и эффективность использования накопленного опыта, конкретные тенденции к поглощению данной отраслью техники новых научных результатов, в том числе и полученных фундаментальными науками. Актуальность этой проблемы обусловлена резко возросшими в современную эпоху темпами морального старения технических средств.
В ряде случаев непосредственному долгосрочному планированию научно-технического развития предшествует логическое моделирование комплексного образа будущей научно-технической политики, включающее в себя( сформулированные экономические, политические и другие цели данного государства, описание ряда научных и технических возможностей их достижения, характеристику ресурсов и потребностей, обусловливающих целесообразность принятия тех или иных государственных решений. Такой описательный документ в научной прогностике называется сценарием будущего. Обычно он составляется на основе обобщения данных предварительно выполненного качественного и количественного анализа( общественных потребностей в развитии данной проблемной области; ее сложившихся внутренних возможностей и противоречий развития; (фона( научно-технической проблематики, определяющего внешние воздействия, стимулирующие и тормозящие развитие прогнозируемой области науки и техники.
Особую форму приобретают такого рода феноменологические модели, как сценарии будущего, в случае прогнозов в области теоретических и фундаментальных исследований.
В начале 70-х годов специалисты А.И. Покровский и Б.А. Старостин сформулировали важную для методологии прогнозирования такого рода объектов концепцию фундаментального научного эффекта (ФЭ) и недостающего для его получения базиса знаний. Эта концепция исходит из того, что предметом исследования в прогностике является не само будущее открытие как таковое, а фундаментальный научный эффект, понимаемый как системная целостность данных, которая может с некоторой вероятностью привести к сдвигам в научных представлениях значительного теоретического и потенциального прикладного масштаба.
Конечно, и само открытие может стать для ряда дальнейших открытий фундаментальным научным эффектом или важнейшим компонентом такового. В этом плане следует рассматривать, например, отношение между Периодическим законом Менделеева (1869) и предсказанными на его основе химическими элементами или между открытием электромагнитных волн Герцем (1889) и развитием радиотехники с ее разнообразными применениями, включая радиолокацию и т. д.
Совокупность целей, средств и предпосылок для разрешения тех или иных научных проблем может быть представлена и более строго интерпретированной моделью – прогнозным графом. Каждый полученный элемент модели (событие) состоит( из описания (на языке соответствующего классификатора); системы количественных оценок данного события (условная вероятность, время свершения, значимость, стоимость); определителей причинно-следственных связей данного события с событиями верхнего и нижнего по отношению к нему уровней. Из такого рода элементов строится модель научно-технического прогресса, представляющая собой ориентированный граф.
Модель описанного вида реализована в практике прогнозных работ Института кибернетики. Она позволяет следить за ходом научно-технического развития конкретной проблемной области, анализировать тенденции и оценивать совокупности задач (ситуации), синтезировать прогнозные варианты тех или иных изменений в ситуациях и оценивать следствия этих изменений. Математическое обеспечение модели базируется на вычислительных процедурах и алгоритмах (метода максимальных возможностей(.
Специфически важная роль во всей излагаемой концепции прогнозирования принадлежит методам информационного моделирования. Характерные свойства массовых потоков научно-технической информации предопределяют ряд возможностей анализа тенденций прогресса науки и техники по (информационным сигналам( – по изменению количественных и структурных параметров этих потоков.
Известны попытки разработать методы анализа информационных сигналов, содержащихся в потоках выданных патентных документов о мировом техническом опыте. Закодировав информацию, содержащуюся в патентах по определенному классу технических средств, можно определить те элементы и типы технических решений, по которым ускорение прироста новых данных существенно отлично от средних значений. Это явление предложено рассматривать как сигнал о том, что через 5-8 лет такого рода решения будут обновлять соответствующие характеристики практически применяемых средств техники.
В дальнейшем предстоит проверить прогнозное значение инженерно-технических выводов, вытекающих из подобного анализа патентных данных. Процедура классификации содержания патентов и оценки прироста данных нуждается в совершенствовании с учетом существующих принципиальных различий в национальных системах патентования и в побудительных мотивах к патентованию новых идей, а также влияния на этот процесс конъюнктуры мирового рынка.
Интересные идеи пришли в область информационных методов анализа развития науки в связи с появившейся возможностью автоматизированного составления индексов связей (ИНС) между различными научными публикациями.
Подобным образом составляются ежегодно издаваемые перекрестные библиографические указатели информации по важнейшим разделам науки. Однако, как это нередко бывает в науке, очень скоро выяснились и другие его возможности, специфически важные для науковедения. ИНС оказался мощным и перспективным инструментом анализа тенденций развития науки, диагноза состояния междисциплинарных связей и прогнозирования ряда явлений в жизнедеятельности организма науки. Исходная предпосылка этих ценных для науковедения свойств ИНС содержится в том факте, что сеть фактического взаимовлияния, построенная по данным ИНС, является информационным отображением – моделью историко-логической сети связей реального процесса развития науки.
Используя хорошо известные сейчас математические методы, можно производить анализ информационных сетей любой сложности, получая объективные данные о фактическом взаимовлиянии, тенденциях в перераспределении усилий исследователей, интенсивности и направленности миграции научной информации из одних областей исследований во многие другие и т. п.
В типичных для нашего времени условиях широкого фронта научно-исследовательских работ, колоссальных объемов информации и все возрастающего значения взаимодействия наук даже хорошо информированному и компетентному исследователю трудно оперативно уследить за изменениями в тактике решения научной проблемы, происходящими в разных странах. Изменения в структуре потоков информации – их чувствительный индикатор. На основе анализа этих изменений можно прогнозировать предстоящие потребности в возникновении новых специализированных научных учреждений, необходимость в существующих и новых журналах, назревающее обособление новых относительно самостоятельных научных направлений. Структура, интенсивность и направленность сетей фактического взаимовлияния позволяют также прогнозировать ожидаемые в отдельных областях крупные научные сдвиги, а иногда дают материал для объяснения причин низкой результативности тех или иных направлений.
В последние годы внимание науковедов привлекают возможности использования для анализа опыта развития науки методов исследования операций. Применительно к задачам программных и организационных прогнозов подобный подход начинает складываться в попытки создания экономико-математических моделей выбора вариантов развития и целесообразного распределения ресурсов, что весьма актуально с точки зрения последующего использования прогнозных данных.
В целом развитие методов моделирования, используемых прогнозистами науки и техники, идет по пути синтеза рациональных элементов всех методов и подходов. Это весьма перспективный путь, так как он открывает возможность создания единых комплексных методов для последовательной разработки исследовательских, программных и организационных прогнозов.

Заключение.
Поставив перед страной задачу всемерного повышения эффективности научно-технического прогресса, правительство важную роль при ее решении отводит совершенствованию дела организации и управления научно-техническим прогрессом.
В этом исторически важном деле науковедению, обратившему аппарат научного анализа на изучение процессов научно-технического развития, принадлежит исключительная роль. Оно должно стать подлинной теоретической основой государственного управления прогрессом науки и техники.
Внимательно изучая уроки прошлого, глубоко анализируя современный опыт, науковедение стремится познать будущее науки. Всеми своими результатами оно призвано служить более успешному прокладыванию наукой путей в будущее. В особенности функция конкретизации представлении о будущем науки и техники присуща вновь формирующейся ветви науковедения.
Науковеды-прогнозисты представляют собой лишь небольшой отряд исследователей в огромной армии российских ученых. Они отнюдь не претендуют на роль проводника науки, а только стремятся стать деловыми и полезными помощниками людей и коллективов, непосредственно творящих будущее науки и техники. Мы помним мудрое высказывание В. И. Ленина о том, что (ум десятков миллионов творцов создает нечто неизмеримо более высокое, чем самое великое и гениальное предвидение(1. Роль науковеда-прогнозиста в коллективном процессе предвидения будущего представляется нам в следующих основных чертах. Прежде всего такой ученый выступает как организатор групп специалистов, располагающих знаниями, опытом и интуицией, необходимыми для комплексных прогнозных разработок. Прогнозист участвует в этой работе как исследователь, имеющий в своем распоряжении развитый арсенал специальных методов изучения процессов научно-технического развития. Вместе с тем на нем лежит непременная обязанность постоянно обобщать реальный опыт прогнозирования, развивать его теоретические основы и совершенствовать специальные методы и процедуры.
Будущее нашей отрасли знания – в тесном сотрудничестве со специалистами всех отраслей науки, в познании специфики их творческого труда и обогащении науковедения ценнейшим опытом организации научного прогресса, каждодневно накапливаемым в науке.

Список используемой литературы.
1. К. Маркс и Ф. Энгельс. Соч., т. 23.
2. В.И. Вернандский. Задача дня в области радия. – В сб. Очерки и речи академика В.И. Вернандского, ч.1 Пг., 1922.
3. А.Г. Ивахенко. Долгосрочное прогнозирование и управление сложными системами. Киев, 1975.
4. В.М. Глушков. Управление наукой и фундаментальные исследования.Вестник академии наук СССР, 1975, N10.
5. Ф. Миллс. "Статистические методы". М., 1958.
6. В.И. Ленин. Полное собрание сочинений, т. 35.
7. Г.М. Добров. Прогнозирование науки и техники. М. 1977.
8. Н.К. Кульбовская. Прогнозирование и измерение научно-технического прогресса. М. 1976.