Философские аспекты теории относительности

1. Общие положения теории относительности

Чтобы увидеть значение теории относительности Эйнштейна для
эволюции физической мысли, следует прежде всего остановиться на
самых общих понятиях относительности положения и движения тел и
однородности пространства и времени. В теории Эйншиейна фигуриру-
ет однородность и изотропность пространства-времени.
Представим себе материальную частицу, затерянную в бесконеч-
ном, абсолютно пустом пространстве. Что в этом случае означают
слова "пространственное положение" частицы? Соответствует ли этим
словам какое-либо реальное свойство частицы?
Если бы в пространстве существовали другие тела, мы могли бы
определить по отношению к ним положение данной частицы, но если
пространство пусто, положение данной частицы оказывается бессо-
держательным понятием. Пространственное положение имеет физичес-
кий смысл только в том случае, когда в пространстве имеются иные
тела, служащие телами отсчета. Если брать в качестве тел отсчета
разные тела, мы придем к различным определениям пространственного
положения данной частицы. С любым телом мы можем связать некото-
рую систему отсчета, например систему прямоугольных координат.
Такие системы равноправны: в какой бы системе отсчета мы ни опре-
деляли положение точек, из которых состоит данное тело, размеры и
форма тела будут одними и теми же, и, измеряя расстояния между
точками, мы не найдем критерия, чтобы отличить одну систему отс-
чета от другой. Мы можем поместить начало координат в любой точке
пространства, мы можем затем перенести это начало в любую другую
точку, либо повернуть оси, либо сделать и то и другое - форма и
размеры тела при таком переносе и повороте не изменятся, так как
не изменится расстояние между любыми двумя фиксированными точками
этого тела. Неизменность этого расстояния при переходе от одной
системы отсчета к другой называют 1 инвариантностью 0 по отношению к
указанному переходу. Мы говорим, что расстояния между точками те-
ла являются 1 инвариантами 0 при переходе от одной прямоугольной сис-
темы координат другой, с иным началом и иным направлением осей.
Расстояния между точками тела служат инвариантами таких коорди-
натных преобразований. В инвариантности расстояний между точками
относительно переноса начала координат выражается однородность
пространства, равноправность всех его точек относительно начала
координат.
Если точки пространства равноправны, то мы не можем опреде-
лить пространственное положение тела абсолютным образом, мы не
можем найти привилегированную систему отсчета. Когда мы говорим о
положении тела, т.е. о координатах его точек, то необходимо ука-
зывать систему отсчета. "Пространственное положение" в этом смыс-
ле является относительным понятием - совокупностью величин, кото-
рые меняются при переходе от одной системы координат к другой
системе, в отличие от расстояний между точками, которые не меня-
ются при указанном переходе.
Однородность пространства выражается, далее, в том, что сво-
бодное тело, переходя из одного места в другое, сохраняет одну и
ту же скорость и соответственно сохраняет приобретенный им им-
пульс. Каждое изменение скорости и, соответственно, импульса, мы
объясняем не тем, что тело передвинулось в пространстве, а взаи-
модействием тел. Изменение импульса данного тела мы относим за
счет некоторого силового поля, в котором оказалось рассматривае-
мое тело.
Нам известна также однородность времени. Она выражается в
сохранении энергии. Если с течением времени не меняется воздейс-
твие, испытываемое данным телом со стороны других тел, иными сло-
вами, если иные тела действуют неизменным образом на данное тело,
то энергия его сохраняется. Мы относим изменение энергии тела за
счет изменения во времени действующих на него сил, а не за счет
самого времени. Время само по себе не меняет энергии системы, и в
этом смысле все мгновения равноправны. Мы не можем найти во вре-
мени привилегированного мгновения, также как не можем найти в
пространстве точку, отличающуюся от других точек по поведению по-
павшей в эту точку частицы. Поскольку все мгновения равноправны,
мы можем отсчитывать время от любого мгновения, объявив его на-
чальным. Рассматривая течение событий, мы убеждаемся, что они
протекают неизменным образом, независимо от выбора начального мо-
мента, начала отсчета времени.
Мы могли бы сказать, что время относительно в том смысле,
что при переходе от одного начала отсчета времени к другому опи-
сание событий остается справедливым и не требует пересмотра. Од-
нако обычно под относительностью времени понимают нечто иное. В
простом и очевидном смысле независимости течения событий от выбо-
ра начального момента относительность времени не могла бы стать
основой новой теории, совсем не очевидной, опрокидывающей обычное
представление о времени.
Под относительностью времени мы будем понимать зависимость
течения времени от выбора пространственной системы отсчета. Соот-
ветственно абсолютным временем называется время, не зависящее от
выбора пространственной системы координат, протекающее единооб-
разно на всех движущихся одна относительно другой системах отсче-
та, - последовательность моментов, наступающих одновременно во
всех точках пространства. В классической физике существовало
представление о потоке времени, который не зависит от реальных
движений тела, - о времени, которое течет во всей Вселенной с од-
ной и той же быстротой. Какой реальный процесс лежит в основе по-
добного представления об абсолютном времени, о мгновении, однов-
ременно наступающем в отдаленных пунктах пространства?
Вспомним условия отождествления времени в разных точках
пространства.
Время события, происшедшего в точке а 41 0, и время события,
происшелшего в точке а 42 0 можно отождествить, если события связаны
мгновенным воздействием одного события на другое. Пусть в точке
а 41 0 находится твердое тело, соединенное абсолютно жестким, совер-
шенно недеформирующимся стержнем с телом, находящимся в точке а 42 0.
Толчок, полученный телом в точке а 41 0, мгновенно, с бесконечной
скоростью, передается через стержень телу в точке 4  0а 42 0. Оба тела
сдвинутся в одно и то же мгновение. Но все дело в том, что в при-
роде нет абсолютно жестких стержней, нет мгновенных действий од-
ного тела на другое. Взаимодействия тел передаются с конечной
скоростью, никогда не превышающей скорости света. В стержне, сое-
диняющем тела, при толчке возникает деформация, которая распрост-
раняется с конечной скоростью от одного конца стержня к другому,
подобно тому, как световой сигнал идет с конечной скоростью от
источника света к экрану. В природе нет мгновенных физических
процессов, соединяющих события, происшедшие в удаленных один от
другого пунктах пространства. Понятие "один и тот же момент вре-
мени" имеет абсолютный смысл, пока мы не сталкиваемся с медленны-
ми движениями тел и можем приписать бесконечную скорость светово-
му сигналу, толчку, переданному через твердый стержень или любому
другому взаимодействию движущихся тел. В мире быстрых движений,
при сравнении с которыми распространению света и взаимодействию
между телами уже нельзя приписывать бесконечно большую скорость,
- в этом мире понятие одновременности имеет относительный смысл,
и мы должны отказаться от привычного образа единого времени, те-
кущего во всей Вселенной, - последовательности одних и тех же,
одновременных, моментов в различных пунктах пространства.
Классическая физика исходит из подобного образа. Она допус-
кает, что одно и то же мгновенно наступает повсюду - на Земле, на
Солнце, на Сириусе, на внегалактических туманностях, отстоящих от
нас так далеко, что их свет идет к нам миллиарды лет.
Если бы взаимодействия тел (например силы тяготения, связы-
вающие все тела природы) распространялись мгновенно, с бесконеч-
ной скоростью, мы могли бы говорить о совпадении момента, когда
одно тело начинает воздействовать на другое, и момента, когда
второе тело, удаленное от первого, испытывает это воздействие.
Назовем воздействие тела на удаленное от него другое тело сигна-
лом. Мгновенная передача сигнала - основа отождествления момен-
тов, наступивших в отдаленных пунктах пространства. Такое отож-
дествление можно представить в виде синхронизации часов. Задача
состоит в том,чтобы часы в в точке а 41 и в точке а 42 показывали
одно и то же время. Если существуют мгновенные сигналы, эта зада-
ча не составляет труда. Часы можно было бы синхронизировать по
радио, световым сигналом, выстрелом из пушки, механическим им-
пульсом (посадить,например,стрелки часов в а 41 и в а 42 на один
длинный абсолютно жесткий вал), если бы радиоприемник, свет, звук
и механические напряжения в вале передавались с бесконечно боль-
шой скоростью. В этом случае мы могли бы говорить о чисто прост-
ранственных связях в природе, о процессах, протекающих в нулевой
промежуток времени. Соответственно трехмерная геометрия имела бы
реальные физические прообразы. Пространство в этом случае мы бы
могли рассматривать вне времени, и такой взгляд давал бы точное
представление о действительности. Временные мгновенные сигналы
служат прямым физическим эквивалентом трехмерной геометрии. Мы
видим, что трехмерная геометрия находит прямой прообраз в класси-
ческой механике, которая включает представление о бесконечной
скорости сигналов, о мгновенном распространении взаимодействий
между отдаленными телами. Классическая механика допускает, что
существуют реальные физические процессы, которые могут быть с аб-
солютной точностью описаны мгновенной фотографией. Мгновенная фо-
тография, разумеется стереоскопическая - это как бы трехмерное
пространственное сечение пространственно-временного мира, это че-
тырехмерный мир событий, взятый в один и тот же момент. Бесконеч-
но быстрое взаимодействие - процесс, который может быть описан в
пределах мгновенной временной картины мира.
Но теория поля как реальной физической среды исключает мгно-
венное ньютоново дальнодействие и мгновенное распространение сиг-
налов через промежуточную среду. Не только звук, но и свет, и ра-
диосигналы имеют конечную скорость. Скорость света - предельная
скорость сигналов.
Каков же в этом случае физический смысл одновременности? Что
соответствует последовательности одних и тех же для всей Вселен-
ной моментов? Что соответствует понятию единого времени, единооб-
разно протекающего во всем мире?
Мы можем найти некоторый физический смысл понятия одновре-
менности и таким образом придать самостоятельную реальность чисто
пространственному аспекту бытия, с одной стороны, и абсолютному
времени - с другой, даже в том случае, когда все взаимодействия
распространяются с конечной скоростью. Но условием для этого слу-
жит существование неподвижного в целом мирового эфира и возмож-
ность определить скорости движущихся тел абсолютным образом, от-
нося их кэфиру как единому привилегированному телу отсчета.
Представим себе корабль с экранами на носу и на корме. в
центре корабля на равных расстояниях от обоих экранов зажигают
фонарь. Свет фонаря одновременно достигает экранов, и мгновения,
когда это происходит можно отождествить. Свет падает на экран,
находящийся на носу корабля в то же самое мгновение, что и на эк-
ран, находящийся на корме. Таким образом, мы находим физический
прообраз одновременности.
Синхронизация с помощью световых сигналов, одновременно при-
бывающих в два пункта из источника, расположенного на равном
расстоянии от них, возможна, если источник света и указанные два
пункта покоятся в мировом эфире, т.е. когда корабль неподвижен по
отношению к эфиру. Синхронизация возможна и в том случае, когда
корабль движется в эфире. В указанном случае свет дойдет до экра-
на на носу корабля немного позже, а до экрана на корме - немного
раньше. Но, зная скорость корабля относительно эфира, мы можем
определить опережение луча, идущего к экрану на корме и запазды-
вание луча, идущего к экрану на носу, и, учитывая указанные опе-
режение и запаздывание, синхронизировать часы, установленные на
корме и на носу корабля. Мы можем, далее, синхронизировать часы
на двух кораблях, движущихся относительно эфира с различными, но
постоянными, известными нам скоростями. Но для этого также необ-
ходимо, чтобы скорость кораблей относительно эфира имела опреде-
ленный смысл и определенное значение.
Здесь возможны два случая. Если корабль при движении пол-
ностью увлекает за собой эфир, находящийся между фонарем и экра-
нами, то не произойдет запаздывания луча, идущего к экрану на но-
су корабля. При полном увлечении эфира, корабль не смещается от-
носительно эфира, находящегося над его палубой, а скорость света
относительно корабля небудет зависеть от движения корабля. Тем
не менее, мы сможем зарегистрировать зарегистрировать движение
корабля с помощью оптических эффектов. По отношению к кораблю
скорость света не изменится, но она изменится по отношению к бе-
регу. Пусть корабль движется вдоль набережной: на набережной -
два экран а 41 и а 42,причем расстояние между ними равно расстоянию
между экранами на корабле. Когда экраны на движущемся корабле
оказались против экранов на набережной, в центре корабля зажига-
ется фонарь. Если корабль увлекает за собой эфир, то свет фонаря
дойдет одновременно до экрана на корме и до экрана на носу, но в
этом случае свет дойдет в различные моменты до экранов на непод-
вижной набережной. В одном направлении скорость движения корабля
относительно набережной будет прибавляться к скорости света, а в
другом направлении скорость движения корабля нужно будет вычесть
из скорости света. Такой результат - различные скорости света от-
носительно берега - получится, если корабль увлекает эфир. Если
же корабль не увлекает эфир, то свет будет двигаться с одной и
той же скоростью относительно берега и с различной скоростью от-
носительно корабля. Таким образом, изменение скорости света ока-
жется результатом движения корабля в обоих случаях. Если корабль
движется, увлекая эфир, то меняется скорость относительно берега;
если же корабль не увлекает эфир, то меняется скорость света от-
носительно самого корабля.
В середине XIX века техника оптических экспериментов и изме-
рений позволила уловить очень небольшие различия в скорости све-
та. Оказалось возможным проверить, увлекают движущиеся тела эфир,
или не увлекают. В 1851 г. Физо (1819 - 1896) доказал6 что тела
не увлекают полностью эфир. Скорость света, отнесенная к непод-
вижным телам, не меняется, когда свет проходит через движущиеся
среды. Физо пропускал луч света через неподвижную трубку, по ко-
торой текла вода. По существу вода играла роль корабля, а трубка
- неподвижного берега. Результат опыта Физо привел к картине дви-
жения тел в неподвижном эфире без увлечения эфира. Скорость этого
движения можно определить по запаздыванию луча, догоняющего тело
(например, луча направленного к экрану на носу движущегося кораб-
ля), по сравнению с лучом, идущим навстречу телу (например, по
сравнению с лучом фонаря, направленным к экрану на корме). Тем
самым можно было, как казалось тогда, отличить тело, неподвижное
относительно эфира, от тела, движущегося в эфире. В первом ско-
рость света одна и та же во всех направлениях, во втором на меня-
ется в зависимости от направления луча. Существует абсолютное
различие между покоем и движением, они отличаются друг от друга
характером оптических процессов в покоющихся и движущихся средах.
Подобная точка зрения позволяла говорить об абсолютной од-
новременности событий и о возможности абсолютной синхронизации
часов. Световые сигналы достигают точек, расположенных на одном и
том же расстоянии от неподвижного источника, в одно и то же мгно-
вение. Если же источник света и экраны движутся относительно эфи-
ра, то мы можем определить и учесть запаздывание светового сигна-
ла, вызванное этим движением, и считать одним и тем же мгновением
1) момент попадания света на передний экран с поправкой на запаз-
дывание и 2) момент попадания света на задний экран с поправкой
на опережение. Различие в скорости распространения света будет
свидетельствовать о движении источника света и экранов по отноше-
нию к эфиру - абсолютному телу отсчета.
Эксперимент, который должен был показать изменение скорости
света в движущихся телах и соответственно абсолютных характер
движения этих тел, был выполнен в 1881 г. Майкельсоном (1852 -
1931). В последствии его не раз повторяли. По существу, экспери-
мент Майкельсона соответствовал сравнению скорости сигналов, иду-
щих к экранам на корме и на носу движущегося корабля, но в ка-
честве корабля была использована сама Земля, движущаяся в прост-
ранстве со скоростью около 30 км/сек. Далее, сравнивали не ско-
рость луча, догоняющего тело и луча, идущего навстречу телу, а
скорость распространения света в продольном и поперечном направ-
лениях. В инструменте, примененном в опыте Майкельсона, так назы-
ваемом интерферометре, один луч шел по направлению движения Земли
- в продольном плече интерферометра, а другой луч - в поперечном
плече. Различие в скоростях этих лучей должно было продемонстри-
ровать зависимость скорости света в приборе от движения Земли.
Результаты эксперимента Майкельсона оказались отрицательны-
ми. На поверхности Земли свет движется с одной и той же скоростью
во всех направлениях.
Такой вывод казался крайне парадоксальным. Он должен был
привести к принципиальному отказу от классического правила сложе-
ния скоростей. Скорость света одна и та же во всех телах, движу-
щихся по отношению друг к другу равномерно и прямолинейно. Свет
проходит с неизменной скоростью, приблизительно равной 300000
км/сек., мимо неподвижного тела, мимо тела, движущегося навстречу
свету, мимо тела, которое свет догоняет. Свет - это путник, кото-
рый идет по полотну железной дороги, между путями, с одной и той
же скоростью относительно встречного поезда, относительно поезда,
идущего в том же направлении, относительно самого полотна, отно-
сительно пролетающего над ним самолета и т.д., или пассажир, ко-
торый движется по вагону мчащегося поезда с одной и той же ско-
ростью относительно вагона и относительно Земли.
Чтобы отказаться от классических принципов, казавшихся со-
вершенно очевидными и непререкаемыми, понадобилась гениальная си-
ла и смелость физической мысли. Непосредственные предшественники
Эйнштейна подошли очень близко к теории относительности, но они
не могли сделать решающего шага, не могли допустить, что свет не
кажущимся образом, а в действительности распространяется с одной
и той же скоростью относительно тел, которые смещаются одно от-
носительно к другому.
Лоренц (1853-1928) выдвинул теорию, сохраняющую неподвижный
эфир и классическое правило сложения скоростей и вместе с тем
совместимую с результатами опытов Майкельсона. Лоренц предполо-
жил, что все тела при движении испытывают продольное сокращение,
они уменьшают свою протяженность вдоль направления движения.
Если все тела сокращают свои продольные размеры, то нельзя
обнаружить подобное сокращение непосредственным измерением, нап-
ример прикладыванием линейки с делениями к движущемуся стержню.
При этом движется и линейка и соответственно уменьшаются ее длина
и размеры нанесенных на нее делений. Лоренцово сокращение компен-
сирует изменения скорости света, вызванные движением тела относи-
тельно эфира. Луч света движется медленнее в продольном плече ин-
терферометра, но само плечо, благодаря движению, стало короче, и
свет проходит свой путь в продольном плече в течение того же вре-
мени, что и в поперечном плече. Различие в скорости света в силу
этого компенсируется и не может быть обнаружено. Таким образом
Лоренц рассматривает обнаруженное Майкельсоном постоянство ско-
рости света как чисто феноменологический результат взаимной ком-
пенсации двух эффектов движения: уменьшение скорости света и сок-
ращения проходимого им расстояния. С такой точки зрения класси-
ческое правило сложения скоростей остается незыблемым. Абсолютный
характер движения сохраняется - изменение скорости света сущест-
вует; следовательно, движение может быть отнесено не к другим те-
лам, равноправным эфиру, а к универсальному телу отсчета - непод-
вижному эфиру. Сокращение носит абсолютный характер - существует
истинная длина стержня, покоящегося относительно эфира, иными
словами, стержня, покоящегося в абсолютном смысле.
В 1905 г. Альберт Эйнштейн (1879-1955) опубликовал статью "К
электродинамике движущихся тел". В этой статье изложена теория,
исключающая существование абсолютного тела отсчета и привилегиро-
ванной системы координат для прямолинейного и равномерного движе-
ния. Теория Эйнштейна исключает абсолютное, независимое от прост-
ранственной системы отсчета время и отказывается от классического
принципа сложения скоростей. Эйнштейн исходит из субстанциональ-
ного постоянства скорости света, из того, что скорость света
действительно одна и та же в различных, движущихся одна по отно-
шению к другой системах. У Лоренца абсолютное движение тел приво-
дит к изменению скорости света в этих телах, и, таким образом,
обладает реальным физическим смыслом. Оно - это абсолютное движе-
ние - прячется от наблюдателя в силу сокращения продольных масш-
табов, затушевывающего оптический эффект абсолютного движения. У
Эйнштейна абсолютное движение не прячется от наблюдателя, а прос-
то не существует.
Если движение относительно эфира не вызывает никаких эффек-
тов в движущихся телах, то оно является физически бессодержатель-
ным понятием.
Оптические процессы в теле не могут быть критерием его рав-
номерного и прямолинейного движения. Равномерное и прямолинейное
движение тела А не изменяет хода оптических процессов, оно имеет
относительный смысл, должно быть отнесено к другому телу В и сос-
тоит оно в изменении расстояния между А и В.Мы можем с одним и
тем же правом присвоить роль тела отсчета, т.е. приписать непод-
вижность как телу А, так и телу В; фраза "тело А движется относи-
тельно тела В" и "тело В движется относительно тела А" описывает
одну и ту же ситуацию. Только такой смысл имеет равномерное и
прямолинейное движение. Оно отнесено к конкретным телам; мы можем
отнести движение тела А к различным телам отсчета, получить раз-
личные значения его скорости, и никакое абсолютное тело отсчета
типа эфира не должно фигурировать в научной картине мира. Движе-
ние тел относительно эфира и, следовательно, движение эфира отно-
сительно тел не имеют физического смысла.
Тем самым из физической картины мира устраняется понятие
единого времени, охватывающего всю Вселенную. Здесь Эйнштейн по-
дошел к самым коренным проблемам науки - к проблемам пространс-
тва, времени и их связи друг с другом.
Если нет мирового эфира, то нельзя приписать некоторому телу
неподвижность и на этом основании считать его началом неподвиж-
ной, в абсолютном смысле, привилегированной системы координат.
Тогда нельзя говорить и об абсолютной одновременности событий,
нельзя утверждать, что два события, одновременные в одной системе
координат, будут одновременными и во всякой другой системе коор-
динат.
Вернемся к кораблю с экранами на корме и на носу и к набе-
режной, на которой также установлены экраны. Когда вспышка фонаря
одновременно осветила экраны, мы можем говорить, что освещение
экрана на корме и на носу - одновременные события. В системе ко-
ординат, связанной с кораблем, эти события действительно одновре-
менны. Но мы не остановились на этой констатации и считали воз-
можным говорить об одновременности в абсолютном смысле. Тот факт,
что при движении корабля экраны освещаются не одновременно, нас
не смущал, мы учитывали запаздывание света, догоняющего корабль,
т.е. идущего от фонаря к экрану на носу. Мы всегда могли восполь-
зоваться абсолютно неподвижной, связанной с эфиром системой отс-
чета и перейти от движущегося корабля к неподвижной набережной и
убедиться, что в этой "неподвижной", "истинной", "абсолютной",
"привилегированной" системе отсчета свет распространяется во все
стороны с постоянной скоростью, а в других, движущихся, системах,
он меняет скорость. До теории Эйнштейна слова "неподвижная",
"привилегированная", "абсолютная" система отсчета не ставились в
кавычки: все были убеждены в существовании внутреннего критерия
движения - различия в ходе оптических процессов в неподвижных (в
абсолютном смысле, относительно неподвижного мирового эфира) те-
лах и в движущихся (также в абсолютном смысле) телах. Синхрониза-
ция часов казалась возможной даже в том случае, когда речь шла о
часах, расположенных в двух системах, из которых одна движется
относительно другой.
Когда корабль движется вдоль набережной, свет достигает эк-
ранов на корабле в различные моменты времени; но мы считали эти
моменты различными потому, что видели экраны на набережной, отож-
дествляли мгновения, когда свет попадает на эти неподвижные экра-
ны, приписывали абсолютный характер одновременности, зарегистри-
рованной в неподвижной системе отсчета. Теперь от всего этого
приходится отказаться. С точки зрения теории относительности, на-
ходясь на корабле и не видя набережной, нельзя найти доказатель-
ства неодновременности освещения экранов на носу и на корме. Мы
считали эти моменты неодновременными, потому что во время расп-
ространения света от фонаря к экранам корабль сдвинулся по отно-
шению к набережной, а эту набережную мы признаем неподвижной в
абсолютном смысле. Сверяя часы с помощью экранов на набережной,
т,е, считая одновременными мгновения, когда свет достиг этих не-
подвижных экранов, мы, естественно, должны различать моменты,
когда свет доходит до экранов на движущемся корабле. Но если дви-
жение корабля и неподвижность набережной не имеют абсолютного ха-
рактера, мы можем таким же правом рассматривать корабль в качест-
ве неподвижного тела отсчета. Тогда набережная движется, и на на-
бережной свет достигает береговых экранов в различные моменты
времени. Спор о том, какая система отсчета неподвижна в абсолют-
ном смысле, беспредметен, если нет абсолютно покоящегося тела
отсчета - мирового эфира. События, одновременные в одной системе
отсчета, неодновременны в другой системе.
Если нет абсолютной одновременности, то нет абсолютного вре-
мени, протекающего единообразно во всех смещающихся одна относи-
тельно другой системах. Время зависит от движения.
Какова эта зависимость, как изменяется ход времени при пере-
ходе из одной системе к другой? Еще до появления работы Эйнштейна
Лоренц утверждал, что при сокращении продольных масштабов в дви-
жущихся системах будет вместе с тем замедляться ход часов. Сокра-
щение масштабов и замедление хода часов как раз и будет компенси-
ровать изменение скорости света в движущихся системах. Поэтому
замедление хода часов, как и сокращение масштабов, можно вычис-
лить, исходя из постоянства скорости света.
У Эйнштейна сокращение продольных пространственных масштабов
и замедление времени в движущихся системах имеет совсем другой
смысл, чем у Лоренца. Время замедляется не по сравнению с "истин-
ным", "абсолютным" временем, текущим в неподвижных относительно
эфира, т.е. в абсолютно неподвижных, системах. Длина продольно
движущегося стержня сокращается не по сравнению с некоторой "ис-
тинной" и "абсолютной" длиной стержня, покоящегося в эфире. С
точки зрения Эйнштейна, сокращение масштабов (как и замедление
времени) взаимно.Если система К 5' движется относительно системы
К, то с таким же правом можно сказать, что система К движется от-
носительно системы К 5'. Длина стержня, измеренная в системе К, от-
носительно которой он покоится, окажется меньше, если ее изме-
рить в системе К 5'. Но, в свою очередь, стержень, покоящийся в
системе К 5', окажется короче при измерении в системе К. Речь идет
о вполне реальном измерении длины, но понятие "реальное измере-
ние" не означает существование неизменной абсолютной "привилеги-
рованной" длины.Причиной лоренцова сокращения служит реальный
процесс взаимного движения систем - процесс, в котором обе систе-
мы играют совершенно равноценную роль. Лоренцово представление о
реальном сокращении длины стержня по сравнению с неизменной, "ис-
тинной" длиной стержня, покоящегося в абсолютном смысле, - это
более "классическое", но вовсе не более естественное представле-
ние, чем представление Эйнштейна о взаимном сокращении масштабов
в системах, движущихся одна по отношению к другой. Взаимное пере-
мещение тел, изменение их взаимных расстояний легче представить
себе, чем абсолютное движение, отнесенное к пустому пространству
либо к однородному эфиру.
Идеи, высказанные Эйнштейном в 1905 году, уже в ближайшие
годы заинтересовали очень широкие круги. Люди чувствовали, что
теория, с такой смелостью посягнувшая на традиционные представле-
ния о пространстве и времени, не может не привести при своем раз-
витии и применении к очень глубоким производственно-техническим и
культурным сдвигам. Разумеется, только теперь стал ясен путь от
абстрактных рассуждений о пространстве и времени к представлению
о колоссальных запасах энергии, таящихся в недрах вещества и жду-
щих своего освобождения, чтобы изменить облик производственной
техники и культуры. Попытаемся несколькими штрихами обрисовать
этот путь, хотя две-три фразы не могут дать представления о цепи
глубоких и сложных математических построений, о многократном пе-
ресмотре самых, казалось бы, очевидных и прочных концепций клас-
сической физики.
Эйнштейн вывел из постоянства скорости света в движущихся
телах невозможность для этих тел превысить скорость света. Тем
самым из картины мира исключаются мгновенные, распространяющиеся
с бесконечной скоростью, воздействия одного физического объекта
на другой. Исключаются также воздействия, распространяющиеся с
конечной скоростью, превышающей скорость света. Два события могут
быть связаны друг с другом причинной связью, одно событие может
быть причиной второго, если время, прошедшее между событиями, не
меньше времени, необходимого свету, чтобы пройти расстояние между
точками, где произошли эти события. Такое представление о при-
чинной связи между событиями можно назвать релятивистским, в от-
личие от классического представления, допускавшего, что событие в
одной точке может повлиять на событие в другой точке при сколь
угодно малом промежутке времени между событиями.
Сопоставляя релятивистскую причинность с классической, можно
увидеть некоторую существенную для истории науки связь между ме-
ханической картиной мира и ее релятивистским обобщением. Причин-
ная связь между двумя событиями в отдаленных точках 4  0а 41 и а 42 сос-
тоит в том, что событие в точке а 41 вызывает отправление некоторо-
го сигнала, который, прибыв в точку а 42, вызывает здесь второе со-
бытие. Первым событием может быть, например, выстрел, а вторым -
попадание снаряда в цель. Причинная связь состоит в движениисна-
ряда, играющего в этом примере роль сигнала. Бесконечная скорость
сигнала означала бы, что причина (отправление передающего воз-
действия сигнала из а 41) и следствие (его приход в а 42) возникают
одновременно. Следовательно, причинная связь может быть представ-
лена в чисто пространственном аспекте. Чтобы придать понятию при-
чинной связи пространственно-временной вид, нужно найти предел
скоростей, и он был найден в постоянной скорости распространения
электромагнитного поля.
Обобщение, о котором идет речь, связано с новой трактовкой
условий тождественности движущегося объекта. Тождественным себе
может быть объект, движение которого подчинено условию: расстоя-
ние между точками а 41  и а 42 пребывания тела в моменты t 41 и t 42 не
должно быть больше, чем скорость света, умноженная на 4 t 41-t 42. Если
это условие не соблюдено, то перед нами не движущийся тождествен-
ный себе объект, а различные нетождественные объекты.
Обратимся теперь к динамическим выводам из существования
границы механических скоростей.
Если тело движется со скоростью, близкой к скорости света, и
на него начинает действовать дополнительная сила, то ускорение не
может быть таким, чтобы тело достигло скорости, превышающей ско-
рость света. Чем ближе к скорости света, тем больше тело сопро-
тивляется силе, тем меньшее ускорение вызывает одна и та же при-
ложенная к телу сила. Сопротивление тела ускорению, т.е. масса
тела, растет со скоростью и стремится к бесконечности, когда ско-
рость тела приближается к скорости света. Таким образом, масса
тела зависит от скорости его движения, она растет при растет при
возрастании скорости и пропорциональна энергии движения. Что ка-
сается массы покоящегося тела, она связана определенным отношени-
ем с внутренней энергией - энергией покоящегося тела. Эта энергия
равна массе покоя, умноженной на квадрат скорости света. Если
энергия движения тела переходит в его внутреннюю энергию (напри-
мер, тепловую энергию или энергию химических связей), от соот-
ветственно возрастанию энергии возрастает масса покоя.
Но масса покоя отнюдь не равна сумме заключенной в теле теп-
ловой, химической и электрической энергии, деленной на квадрат
скорости света. Этой сумме соответствует очень небольшая часть
всей энергии покоя. Переход энергии движения двух тел в энергию
покоя, например при неупругом соударении этих тел, увеличивает
энергию на ничтожную величину по сравнению со всей энергией по-
коя. В свою очередь переход теплоты в энергию движения тел умень-
шает энергию покоя (и массу покоя) на ничтожную долю. Тело с тем-
пературой, равной абсолютному нулю, с нулевой химической и элект-
рической энергией обладало бы энергией покоя и массой покоя, лишь
в ничтожной мере уменьшившимися по сравнению с телом обычной тем-
пературы и с обычными запасами химической и электрической энер-
гии.
До середины нашего столетия во всех областях техники исполь-
зовали лишь подобные ничтожные изменения энергии покоя и массы
покоя тел. Сейчас появились практически применяемые реакции, при
которых затрачивается или пополняется основной массив заключенной
в веществе энергии покоя.
В современной физике существует представление о полном пере-
ходе энергии покоя в энергию движения, т.е. о превращении части-
цы, обладающей массой покоя, в частицу с нулевой массой покоя и
очень большой энергией движения и массой движения. Такие переходы
наблюдаются в природе. До практического применения подобных про-
цессов еще далеко. Сейчас используются процессы, освобождающие
внутреннюю энергию атомных ядер. Атомная энергетика оказалась ре-
шающим экспериментальным и практическим доказательством теории
относительности Эйнштейна.
Разумеется в 1905 г., когда была опубликована первая статья
Эйнштейна о теории относительности, никто не мог предвидеть конк-
ретных путей научно-технической революции, призванной воплотить в
жизнь новое учение о пространстве, времени и движении. В теории
относительности видели поразительно глубокое, стройное и смелое
обобщение и истолкование уже известных экспериментальных данных,
прежде всего фактов, свидетельствующих о постоянстве скорости
света, о ее независимости от прямолинейного и равномерного движе-
ния системы, через которую проходит световой луч.
Вместе с тем ученые понимали, что, отвергнув, казалось бы
очевидное, классическое понятие одновременности, отказавшись от
не менее очевидного классического правила сложения скоростей, до-
пуская и обсуждая парадоксальные, на первый взгляд, выводы, физи-
ка овладевает очень мощным оружием.
Покинув пристань ньютоновской механики, бросив вызов "оче-
видности", не ограничивая отныне свои пути традиционным фарвате-
ром, наука может открыть новые берега. Какие плоды зреют на этих
берегах, что получит практика от новых теоретических обобщений,
тогда еще не знали. Существовала лишь, как уже было сказано, ин-
туитивная уверенность, что смелости и широте новых идей должны
соответствовать некоторые коренные технические культурные сдвиги.
Как бы то ни было, дело было сделано. В науку были пущены
идеи, которым предстояло революционизировать учение о космосе и
микромире, учение о движении и энергии, представление о прост-
ранстве и времени, а впоследствии стать основой атомной энергети-
ки. Эти идеи стали жить своей жизнью.
В 1907-1908 гг. Герман Миньковский (1864 - 1908) придал тео-
рии относительности весьма стройную и важную для последующего
обобщения геометрическую форму. В статье "Принцип относительнос-
ти" (1907) и в докладе "Пространство и время" (1908) теория Эйн-
штейна была сформулирована в виде учения об инвариантах четырех-
мерной евклидовой геометрии. У нас нет сейчас ни возможности, ни
необходимости давать сколько-нибудь строгое определение инвариан-
та и присоединить что-нибудь новое к тому, что уже было о нем
сказано. Понятие многомерного пространства, в частности четырех-
мерного пространства, также не требует здесь строгого определе-
ния; можно ограничиться самыми краткими пояснениями.
Ранее уже говорилось, что положение точки на плоскости может
быть задано двумя числами, измеряющими длины перпендикуляров,
опущенных на оси некоторой координатной системы. Если перейти к
иной системе отсчета, координаты каждой точки изменятся,но расс-
тояние между точками при таком координатном преобразовании не
изменятся. Инвариантность расстояний при координатных преобразо-
ваниях может быть показана не только в геометрии на плоскости, но
и в трехмерной геометрии. При движении геометрической фигуры в
пространстве координаты точек меняются, а расстояния между ними
остаются неизменными. Как уже было сказано, существование инвари-
антов координатных преобразований можно назвать равноправностью
систем отсчета, равноценностью точек, в каждой можно поместить
начало координатной сис