Глава XIV. СИЛЛОГИЗМ. ФИГУРЫ И МОДУСЫ СИЛЛОГИЗМА

.

Глава XIV. СИЛЛОГИЗМ. ФИГУРЫ И МОДУСЫ СИЛЛОГИЗМА

Возможные сочетания суждений в силлогизме. В предыдущей главе мы рассмотрели условия правильности силлогизмов. Рас­смотрим теперь на примерах приложение этих правил. Мы будем брать по три суждения, которые могли бы составить силлогизм. Эти суждения должны быть или А, или I, или О, или Е. Причём само собой разумеется, что для образования силлогизма они мо­гут комбинироваться самыми различными способами. Например, мы могли бы иметь сочетание суждений АAО, EAI и т. п. Но мы должны исследовать, пользуясь вышеизложенными правилами, какие из этих сочетаний или соединений дают правильные сил­логизмы.

Для того чтобы решить вопрос, какие сочетания дают правиль­ные силлогизмы, мы должны предварительно решить вопрос, ка­кие вообще возможны сочетания. Для этого мы поступим сле­дующим образом. Возьмём сочетания АА, АЕ, AI, АО 4 раза и прибавим к этим сочетаниям А, Е, I, О, получим:

АAА или АЕА или AIA или же АОА

ААЕ »     АЕЕ  »      А1Е  »      »  АОЕ

AAI »      AEI   »       АII   »       » AOI

ААО >    АЕО »       АIO  »      » АОО    и т.д;

Действуя аналогичным способом, мы можем получить 64 воз­можных сочетания.

Составив полную таблицу таких сочетаний, мы рассмотрим, руководясь правилами, приведёнными в прошлой главе, какие из этих сочетаний должны быть отброшены, как не соответствую­щие этим правилам, и какие из этих сочетаний должны быть оста­влены, как дающие правильные силлогизмы.

Берём первое сочетание ААА. Это сочетание не противоречит всем восьми правилам.

Сочетание ААЕ противно правилу 6, потому что в заключении находится отрицательное суждение Е; а чтобы это было воз­можно, нужно, чтобы одна из посылок была суждением отрица­тельным, между тем в нашем силлогизме ААЕ обе посылки положительные. Следовательно, данное сочетание оказывается не возможным.

Сочетание АЛО противоречит правилу 6, потому что заключение отрицательное, в то время как посылки утвердительные.

Если таким способом исследовать все 64 случая, то останется только 11 сочетаний, которые дают правильные силлогизмы. Эти сочетания следующие: ААА, AAI, АЕЕ, АЕО, АII, АОО, ЕАЕ, ЕАО, ЕIO, IAI, ОАО.

Мы поставили своей задачей решение вопроса, сочетание ка­ких суждений может давать правильные силлогизмы. Казалось бы, что указанным способом мы разрешаем тот вопрос, который нас интересует, но в действительности это не так, потому что при составлении этих сочетаний нужно принять в соображение ещё положение среднего термина в посылках. В том силлогизме, который мы до сих пор рассматривали, средний тер­мин в большей посылке является подлежащим, а в меньшей по­сылке — сказуемым. Но среднему термину мы можем придавать произвольное положение: мы можем средний термин сделать сказуемым в обеих посылках, или подлежащим в обеих посылках, или, наконец, сказуемым в большей посылке и подлежащим в меньшей. Сообразно с этим мы получаем так называемые четыре фигуры силлогизма, которые и изображены на прилагаемой схеме.

 

Эта схема даёт возможность помнить положение среднего термина. Горизонтальные линии соединяют посылки, а наклон­ные и вертикальные линии соединяют средний термин в обеих посылках. Если обратить внимание на то, что наклонные и вер­тикальные линии, соединяющие средний термин, расположены симметрично, то легко помнить положение среднего термина.

Фигуры и модусы силлогизма. В фигуре 1 средний термин яв­ляется подлежащим в большей посылке, сказуемым — в мень­шей. В фигуре 2 он является сказуемым в большей посылке, ска­зуемым же и в меньшей посылке. В фигуре 3 он является подле­жащим и в большей и в меньшей посылке, и, наконец, в фигу­ре 4 он является сказуемым в большей посылке и подлежа­щим—в меньшей.

Теперь мы возьмём 11 возможных сочетаний и предположим,  что каждое сочетание изменяет положение среднего термина указанными четырьмя способами, тогда получится 44 сочетание.

Рассмотрим, какие из них возможны. Чтобы показать, как про­изводится такого рода исследование, возьмём для примера со­четание AEE, изобразим его по первой фигуре.

А  Все М суть Р.

Е Ни одно S не есть М.

E Ни одно S не есть Р.

 

Если мы обратим внимание на термин Р, то окажется, что в большей посылке как сказуемое обще-утвердительного сужде­ния он не распределён, между тем в заключении как сказуемое обще-отрицательного суждения он распределён. Это противоре­чит правилу 4, а следовательно, такое сочетание невозможно. Рассмотрим далее, какой вид может принять это сочетание по фигуре 2:

A   все M суть P

E    ни одно M не есть S

E    ни одно S  не есть P

Здесь нет нарушения правил силлогизма, а потому заключение правильно. Но если это заключение мы рассмотрим по фигуре 3, то заключение будет нарушать правило 4. Силлогизм примет та­кой вид:

 

А  Все М суть Р.

Е  Ни одно М не есть S.

Е  Ни одно S не есть Р.

По фигуре 4 это сочетание будет правильно.

Если мы указанным только что способом исследуем все 44 со­четания, то получим следующие 19 правильных видов силлогиз­ма, или модусов, распределённых по фигурам:

 

Фигура 1    Фигура 2      Фигура 3     Фигура 4

 

AAA            EAE               AAI              AAI

EAE              AEE               IAI                AEE

AII                EIO                AII                 IAI

EIO               AOO              EAO              EAO

OAO              EIO

EIO

 

 

 

Всякий изучающий логику должен все эти модусы знать на­изусть. Для облегчения же заучивания придумали следующее стихотворение, написанное гекзаметром:

Burbara, Celarent, Dari'i, Ferioqiie prioris;

Cesare, Cdinestres, Festino, Baroko, sekundae;

Tertia, Darapti, Disarms, Datisi. Felupton, B6kard6, Ferls6n habet: Quarta insuper addit Brumantip, Camencs, Dimarls, Fesupo, Fres'son.

Здесь каждое слово, напечатанное курсивным шрифтом, озна­чает отдельный модус, посылки и заключение которого легко определить, если взять гласные буквы. Например, Barbara озна­чает модус фигуры 1, в котором обе посылки и заключение суть ААА; Celarent означает модус ЕАЕ. Значение остальных букв этих слов будет изложено в следующей главе.

Если бы учащийся сам захотел по указанному выше способу определить, какие сочетания суждений дают правильные силлогизмы, то он может вос­пользоваться след. указаниями.

Если он, руководясь правилами гл. ХШ-й, станет отбрасывать те сочетания, которые противоречат правилам, то у него должно остаться след. 12 сочетаний: AAA AAI АЕЕ АЕО AII АОО ЕАЕ ЕАО ЕЮ IAI ОАО.  Из них последнее сочетание IEO следует также отбросить, потому что оно противоречит четвёртому правилу, именно в заключении больший термин берётся во всём объёме, как сказуемое отрицательного суждения, в то время как в большей посылке, как сказуемое или как подлежащее частно-утвердительного суждения, он взят не во всём объёме. Таким образом остается всего 11 сочетаний.

Если затем он проведёт остающиеся 11 сочетаний по четырём фигурам, то у него, кроме тех 19 сочетаний, которые приведены выше, останутся ещё 5 сочетаний, именно по 1-й фигуре AAI и ЕАО, по 2-й фигуре ЕЛО и АЕО и по 4-й фиг. АЕО. Хотя эти 5 сочетаний дают правильное заключение, но их всё-таки следует отбросить, потому что они дают ослабленное или подчинённое заключение, именно они дают частное заключение, в то время как могут давать л общее. В самом деле, возьмём сочетание AAI по первой фигуре:

Все научные сведения полезны.

Химические сведения научны.________

Некоторые химические сведения полезны.

Хотя это заключение правильно, но при данных посылках можно получить я общее заключение: «все химические сведения полезны». Поэтому данное сочетание следует считать практически бесполезным.

Таким образом, если мы отбросим эти 5 сочетаний, дающих ославленные заключения, то у нас останутся те 19 сочетаний, которые приведены выше.

Возьмём для иллюстрации фигур и модусов примеры.

Фигура I.

Barbara

А Все хищные животные питаются мясом.

А Тигры суть хищные животные.

А Тигры питаются мясом.

Этот силлогизм символически можно изобразить следующим образом. «Хищные животные» как средний термин обозначим

Рис. 23.

Рис. 24.

при помощи М; «питающиеся мясом» как больший термин — посредством Р, а «тигры» — посредством S; тогда силлогизм изобразится при помощи схемы на рис. 23.

 

Celarent

E     Ни одно насекомое не имеет более трех пар ножек.

А   Пчёлы суть насекомые.

Е    Пчёлы не имеют более трёх пар ножек.

Схема этого модуса изображена на рис. 24.

Darn

А  Все хищные животные питаются мясом.

I  Некоторые домашние животные суть хищные животные.

I Некоторые домашние животные питаются мясом (рис, 25).

 

Рис. 25.

Ferio

Е   Ни один невменяемый не наказуем.

I    Некоторые преступники невменяемы.

О  Некоторые преступники не наказуемы (рис. 26).

Рис. 26.

 

 

 

Cesare

Е      Ни один справедливый человек не завистлив.

А      Всякий честолюбивый завистлив.,

E      Ни один честолюбивый человек не есть справедлив (рис. 27).

Рис. 27.

 

 

Camestres

А   Преступники действуют из злого намерения.

Е    N. не действовал из злого намерения.

Е   N  не  есть преступник.

Festino

Е    Ни один благоразумный человек не суеверен.

I     Некоторые хорошо образованные люди суеверны. __

О   Некоторые хорошо образованные люди неблагоразумны.

 

Baroko

A  Все истинно моральные действия совершаются из правильных мотивов.

O  Некоторые действия, благодетельные для других, нe совершают­ся из таких мотивов.

О Некоторые благодетельные для других действия не суть истинно

моральные.

 

Фигура 3.

Darapti

A    Все киты суть млекопитающие.

A   Все киты живут в воде.____________________

I    Некоторые живущие в воде животные суть млекопитающие.

Данное умозаключение относится к фигуре 3, где средний тер­мин d обеих посылках является подлежащим. Меньший термин «живущие в воде существа» взят в меньшей Посылке не во всём объёме; следовательно, и в заключении должен быть взят не во всём объёме (рис. 28).

Рис. 28.

Рис. 29.

 

 

 

 

Felapton

Е   Ни один глухонемой не может говорить;

А   Глухонемые суть духовно нормальные люди

О     Некоторые духовно нормальные люди не могут говорить (рис. 29).

Disamis

I    Некоторые романы поучительны.

А  Все романы суть вымышленные рассказы.

I    Некоторые вымышленные рассказы поучительны.

Ferisoit

Е  Ни одна несправедливая война не может быть оправдана.

I   Некоторые несправедливы е войны были успешны.

О Некоторые успешные войны не могут быть оправданы,

 

Фигура 4. Возьмём силлогизм:

Bramantip

А Все металлы суть материальные вещи.

А Все материальные вещи имеют тяжесть.

I Некоторые тела, имеющие тяжесть, суть металлы.

В этом силлогизме средний термин взят сказуемым в большей и подлежащим в меньшей посылке. Сказуемое в меньшей посылке взято не во всём объёме, поэтому и в заключении оно дол­жно быть взято не во всём объёме. Таким образом, получается заключение: «некоторые тела, имеющие тяжесть, суть металлы». Эта фигура называется галеновской от имени Галена (в III в. н. э.); её не было у Аристотеля.

Ещё пример для иллюстрации четвёртой фигуры.

Camenes

А   Все квадраты суть параллелограмм.

Е    Ни один параллелограмм не есть треугольник.

Е    Ни один треугольник не есть квадрат.

Характеристика фигур. Характеризуем в общих чертах все четыре фигуры силлогизма в отношении их познавательного значения.

 

Фигура 1. В ней меньшая посылка утвердительная, а большая общая (sit minor, affirmans, пес major sit speciaiis). Эта фигура употребляется в тех случаях, когда нужно показать применение общих положений (аксиом, осново­положений, законов природы, правовых норм и т. п.) к част­ным случаям; это есть фигура подчинения.

Фигура 2. В этой фигуре одна из посылок должна быть отрицательной и большая посылка дол­жна быть общей (una negans esto, nec major sit speciaiis). Посредством этой фигуры отвергаются ложные де­дукции, или ложные подчинения. Например, кто-ни­будь утверждает относительно испытуемого газа, что он есть кислород. Нам стоит указать на какой-нибудь присущий кисло­роду признак, который не присущ испытуемому газу, для того чтобы убедиться в том, что это не есть кислород. Тогда у нас получится следующий силлогизм:

А   Кислород поддерживает горение

Е   Этот газ не поддерживает горения,

Е   Этот газ не есть кислород.

Кто-нибудь утверждает, что данное лицо больно лихорадкой; утверждая это, он производит подчинение. Нам нужно отверг­нуть это подчинение. Тогда мы составляем следующий силло­гизм:

 

А Все больные лихорадкой испытывают жажду.

Е Этот больной не испытывает жажды.

Е Этот больной не болен лихорадкой.

Таким образом, по второй фигуре отвергаются ложные подчинения, и именно потому, что одна из посылок отрицательная. Юридические приговоры строятся по этой фигуре. Например:

А Этот смертельный удар нанесён человеком, обладающим огром­ной силой.

Е Обвиняемый не есть человек, обладающий огромной силой.

Е Обвиняемый не нанёс смертельного удара.

 

Фигура 3. В фигуре 3 меньшая посылка должна быть утвердительной, а заключение должно быть частным (sit minor af firmans, conclusio sit specialis). Поэтому в фигуре 3 обыкновенно отвергается мнимая Общность утвердительных и отрицательных суждений или доказывается исключение из об­щего положения. Положим, нам нужно доказать, что утверждение «все металлы тверды» допускает исключение, что оно не всеобще. Тогда мы строим силлогизм по фигуре 3:

E   Ртуть не тверда.

А  Ртуть есть металл.________

О  Некоторые металлы не тверды.

Фигура 4 имеет искусственный характер и обыкновенно не употребляется.

Характер посылок и заключений каждой фигуры может быть наглядно пред­ставлен, если мы буквы модусов каждой фигуры расположим по вертикальным линиям таким образом, что буквы больших посылок будут идти по горизон­тальной, буквы меньших посылок по второй горизонтальной и буквы заключе­ний по третьей горизонтальной.

bAr

bAr

A

cEI

A

rEnt

dA

rl

I

fE

rl

O

 

 

Фигура 1

Все большие посылки общие

Все меньшие посылки утвердительны

cE

sAr

E

cAm

Es

trEs

fEs

tI

nO

bAr

Ok

O

 

 

Фигура 2

Все большие посылки общие

Все заключения отрицательны

Одна посылка всегда отрицательна

dA

rAp

tI

dIs

Am

Is

dA

tIs

I

fE

IAp

tOp

 

bOk

Ar

dO

fE

rIs

On

Фигура 3

Все меньшие посылки утвердительны

Все заключения частные

 

Вопросы для повторения

Чем обусловливается различие между фигурами силлогизма? Ка­кие существуют фигуры силлогизма и какое различие между ними? Перечислите модусы всех четырёх фигур. Какое различие, между фигурами в отношения познания?