3.1. Вехи истории жизни на Земле

.

3.1. Вехи истории жизни на Земле

Предполагается, что 15—20 млрд. лет назад произошел «Большой Взрыв», который дал начало Вселенной. Земля сформировалась примерно 4.5 млрд. лет назад; вид «человек разумный», подвид «разумный» (наш подвид, кроманьонец, Homo sapiens sapiens) не старше ~100 тыс. лет. Если весь возраст Земли принять за шесть дней (по метафорической аналогии с божественным творением в Библии), то на долю H. sapiens  придутся лишь последние 12 секунд. Какие эволюционные вехи предшествовали этому событию? Первейшей стадией биологической эволюции было само возникновение жизни на планете.

До сих пор в научном мире популярна предложенная в 20е—30е годы ХХ века концепция русского биолога А.Опарина и его английского коллеги Дж.Б.С. Холдейна о постепенном возникновении живого в результате спонтанного абиогенного (не вовлекающего живые организмы или их структуры) синтеза органических молекул, включая биополимеры (белки, нуклеиновые кислоты). Какие именно компоненты живых систем возникли в первую очередь на примитивной Земле?

Еще совсем недавно молекулярные биологи, опьяненные успехами в изучении нуклеиновых кислот, полагали, что начало жизни на планете Земля совпадает с абиогенным синтезом первой молекулы ДНК (РНК?).  Им возражали те, кто по-прежнему воспринимал как аксиому слова Ф. Энгельса о «жизни как способе существования белковых тел» и, соответственно, видел в белке начало всего живого (теория А. Опарина в первоначальном варианте). В последние десятилетия накапливаются данные о том, что не белок и не ДНК/РНК, вероятно, положили начало доклеточным предшественникам современной жизни - гипотетическим пробионтам. Жизнь, если она возникла абиогенным синтезом, возможно, эволюционировала на базе динамичной игры малых молекул (органических и неорганических), что представляется все более правдоподобным в свете современных данных. Это могли быть ионы металлов, соединения серы, фосфора, азота, а также небольшие органические молекулы типа аминов, аминокислот, углеводородов.  Подобная гипотеза, постулируя вторичное возникновение биополимеров  (белки, нуклеиновые кислоты, полисахариды) как более тонких регуляторов «игры» малых молекул, находится в соответствии с данными об эволюционно консервативной природе биологически активных малых молекул, осуществляющих жизненно важные процессы в ныне существующих организмах в свободном (гормоны, нейротрансмиттеры, феромоны, аттрактанты, репелленты, факторы внутри- и межклеточной коммуникации и др.) или в связанном состоянии (всевозможные кофакторы, активные группы ферментов и др.). Имеется предположение, что даже функция наследственной передачи признаков, ныне  выполняемая нуклеиновыми кислотами, первоначально зависела от «неорганических генов» - матриц для синтеза молекул (вначале даже небелковой природы), построенных на основе алюмосиликатов глины. Первые биополимеры могли быть результатом автокаталитических реакций малых молекул: получены сведения об автокаталитическом эффекте пептидной связи, ведущем к спонтанному формированию полипептидов в растворе, содержащем свободные аминокислоты и короткий пептид-затравку[16]. В современных клетках до сих пор протекают реликтовые процессы:  неферментативные взаимодействия малых молекул, а белки-ферменты в некоторых случаях не столько ускоряют, сколько регулируют и даже тормозят эти процессы (что показано на примере неферментативных реакций хинонов с цитохромами типа с). Имеется общий сценарий «возникновения жизни в облаках», где мельчайшие дождевые капли, озаренные ультрафиолетом первобытного Солнца и поглощающие частицы соединений металлов и неметаллов в ходе пыльных бурь, обеспечивали достаточную суммарную поверхность для фотоиндуцированного гетерогенного катализа и последующего синтеза более сложных органических молекул, поступавших с дождевыми потоками в океан, где жизнь «дозревала» уже в соответствии с Опаринским сценарием  -- в «первичном бульоне» абиогенно синтезировались протеиноиды -- вещества, более или менее подобные современным белкам.

Обратимся к хронологии происхождения и последующей эволюции живого на нашей планете. Перечислим важнейшие стадии этого процесса (Рис. 4).

Возникновение первых живых организмов (пробионтов) датируется на схеме точкой 3,5 млрд. лет назад («8:00 утра в среду»), поскольку ископаемые микроорганизмы наподобие современных цианобактерий (сине-зелёных водорослей по более ранней классификации) обнаружены в виде окаменелостей (строматолитов) в слоях с примерно такой датировкой[17]. Подобные данные ставят под определенное сомнение изложенную выше концепцию – современную модификацию взглядов Опарина и Холдейна. На процесс абиогенного синтеза компонентов пробионтов, возможно (особенно, если последуют новые, еще более древние находки) остаётся не так уж много времени! Зато эти данные льют воду на мельницу концепций двух типов: 1) панспермии, утверждающей вечность жизни в Космосе и возможность её заноса на Землю, как только там сформировались подходящие условия (точка зрения Л. Пастера, С. Аррениуса, В.И. Вернадского); 2) неокреационизма, понимающего Библию более буквально, чем в указанной выше метафорической схеме. Постулируется та или иная степень вмешательства Творца (Логоса, Высшего разума и др.).

 

Накопление в атмосфере Земли концентрации кислорода, близкой к современной (`20% от объёма). Данная веха (2 – 2,2 млрд. лет назад) связана с первой глобальной экологической катастрофой на Земле – гибелью ранее процветавших анаэробов. Это были организмы, не использовавшие кислород в своей жизнедеятельности; для многих из них он был смертельно опасным ядом.  Потомки анаэробов сохранились доныне только в специализированных экологических нишах, где отсутствует кислород (например, в кишечнике человека). По мысли М.В. Гусева, тогдашняя экологическая катастрофа сопоставима с той, которая угрожает нам ныне.

 

Возникновение эукариот (клеток с ядром) – точка 1,7—1,9 млрд. лет. В соответствии с современной теорией «симбиогенеза», эукариотическая клетка по существу представляет собой своего рода биосоциальную систему,   состоящую из уркариота (гипотетического предка с ядром) и митохондрий и хлоропластов (потомков свободноживущих бактерий, называемых также прокариотами). Более того, клетки одной из групп эукариот (царство Chromista по популярной ныне схеме[18])  представляют собой симбиоз двух эукариотических клеток: в цитоплазме одной эукариотической клетки постоянно обитает другая эукариотическая клетка, содержащая в свою очередь хлоропласты как симбиотические прокариоты. П. Корнинг прилагает к эукариотической клетке даже некоторые  политические категории («власть» и др.). Ставится, например, вопрос – каков характер «социальных отношений» между партнёрами внутри эукариотической клетки – равноправный взаимовыгодный или кабальный (цитоплазма с ядром «порабощает», эксплуатирует митохондрии и хлоропласты). В пользу рабовладельческого характера симбиоза с митохондриями свидетельствует тот факт, что клетка выкачивает из митохондрий  почти всю синтезированную ими «энергетическую валюту» – АТФ с помощью специального транспортёра (AdN). В пользу не просто «рабской» роли митохондрий говорит, однако, их способность вершить судьбу клетки в целом. А именно, всякое нарушение целостности митохондрий, распознаваемое по выходу из них цитохрома с, обрекает клетку на гибель в результате запуска программы клеточной смерти (апоптоза).

 

Возникновение многоклеточных организмов (обнаружены следы, например, червеобразных организмов с возрастом не менее 1 млрд. лет тому назад). Это событие -- результат развития биосоциальности, присущей одноклеточным существам и проявляющейся в обмене сигналами между клетками и формировании колоний как надклеточных структур. Тенденция к всё большей интеграции клеток в колонии приводит к возникновению многоклеточного существа как индивидуальности более высокого порядка. Обмен сигналами между свободно живущими клетками интериоризируется (погружается вовнутрь организма) и трансформируется в выработку внутриорганизменных факторов регуляции (гистогормонов, гормонов, нейромедиаторов). В то же время сигналы, вырабатываемые одноклеточными как независимыми индивидами сопоставимы с факторами межорганизменной коммуникации (феромонами), которыми обмениваются многоклеточные существа.