ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД

.

ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД

Одна из наиболее важных отличительных черт современной науки в сравнении с наукой раннего периода состоит в подчерки­вании того, что называют «экспериментальным методом». Как мы уже видели, все эмпирическое познание в конечном счете осно­вывается на наблюдениях, но эти наблюдения могут быть получены двумя существенно отличными способами. В неэкспериментальных ситуациях мы играем пассивную роль. Мы просто смотрим на звезды или на некоторые цветы, замечаем сходства и разли­чия и пытаемся обнаружить регулярности, которые могут быть выражены как законы. В экспериментальных исследованиях мы играем активную роль. Вместо того чтобы быть случайными зрителями, мы что-то делаем для получения лучших результатов, чем те, которые мы получаем путем простого наблюдения явле­ний природы. Вместо того чтобы ждать, когда природа обеспечит нам ситуацию для наблюдения, мы пытаемся создать такую ситуа­цию. Короче, мы делаем эксперименты.

Экспериментальный метод продемонстрировал свою громадную плодотворность. Огромный прогресс, достигнутый в физике в по­следние два столетия и особенно в последние несколько десяти­летий, был бы невозможен без экспериментального метода. В та­ком случае можно спросить, почему экспериментальный метод не используется во всех областях науки?

В некоторых областях его не так легко использовать, как в физике. В астрономии, например, мы не можем сообщить планете толчок в некотором другом направлении и посмотреть, что с ней случится. Астрономические объекты вне пределов досягаемости. Мы можем только наблюдать и описывать их. Иногда астрономы могут в лаборатории создавать условия, подобные, скажем, усло­виям на поверхности Солнца или Луны, а затем наблюдать, что случится при этих условиях. Но в действительности это есть не астрономический, а физический эксперимент, который имеет лишь некоторое отношение к астрономическому познанию.

Совершенно другие причины препятствуют ученым в области общественных наук производить эксперименты с большими груп­пами людей. Эти ученые производят эксперименты с группами, но обычно это малые группы людей. Если мы хотим узнать, как реагируют люди, когда они не в состоянии получить воду, мы можем взять двух или трех человек, установить им диету без жид­кости и наблюдать их реакцию. Но это не покажет нам, как будут реагировать большие общины, когда будет отключено водоснабже­ние. Было бы интересным экспериментом — отключить водоснаб­жение, например, Нью-Йорка. Станут ли люди неистовствовать или сделаются апатичными? Попытаются ли они организовать революцию против городского управления? Конечно, никакой ученый в области общественных наук не будет планировать постановку такого эксперимента, потому что он знает, что общест­во не позволит ему этого. Люди не разрешат ученым играть их насущными нуждами.

Даже тогда, когда по отношению к общине не проявляется никакой действительной жестокости, часто существует сильное общественное противодействие экспериментам с группами людей. Например, в Мексике имеются племена, которые исполняют ритуальные танцы, когда происходит затмение Солнца. Члены этих племен убеждены, что таким путем они могут задобрить бога, кото­рый вызывает эти затмения. Наконец свет солнца появляется снова. Предположим, что группа антропологов попытается убе­дить этих людей, что их ритуальные танцы не имеют никакого отношения к появлению солнца. В этих целях они предложат пле­мени в качестве эксперимента не исполнять танцев во время оче­редного солнечного затмения и посмотреть, что из этого выйдет. Члены племени возмутятся этим. Для них это будет означать подвергнуть себя риску остаться навсегда в темноте. Они так сильно верят в свою версию, что не захотят подвергаться испы­танию. Таким образом, вы видите, что существуют препятствия для экспериментов в общественных науках даже тогда, когда ученые убеждены, что никакой социальной тревоги эти экспери­менты не вызовут, если будут осуществлены. В общественных науках ученые ограничиваются в общем тем, что они могут узнать из истории и из экспериментов с индивидами и малыми группами.

Экспериментальный метод особенно плодотворен в тех обла­стях, где существуют количественные понятия, которые могут быть точно измерены. Как ученый планирует эксперимент? Трудно описать общую природу эксперимента, поскольку существует так много его разновидностей, что можно указать только немногие их общие черты.

Прежде всего мы пытаемся определить существенные факто­ры, относящиеся к явлению, которое хотим исследовать. Неко­торые факторы — но не слишком многие — должны быть остав­лены в стороне как несущественные. Например, в экспериментах в области механики, где встречаются колеса, рычаги и тому подоб­ные, мы можем не рассматривать трение. Мы знаем, что трение существует, но полагаем, что его влияние слишком мало, чтобы оправдать усложненный эксперимент, который бы учитывал его. Подобным же образом в экспериментах с медленно движущимися телами мы можем игнорировать сопротивление воздуха. Если мы имеем дело с очень высокими скоростями, такими, как сверх­звуковая скорость снаряда, то мы не можем больше игнорировать сопротивление воздуха. Короче, ученый не принимает во внимание только те факторы, влияние которых на его эксперимент, как он полагает, будет незначительным. Иногда, чтобы избежать слиш­ком сложного эксперимента, он даже может игнорировать факто­ры, которые, как он полагает, могут иметь важный эффект...

В качестве простого примера рассмотрим следующий экспери­мент с газом. Мы делаем грубое наблюдение, что температура, объем и давление газа часто изменяются одновременно. Мы хотим знать точно, как эти три величины соотносятся друг с другом. Четвертым существенным фактором будет состав газа, который мы используем. Мы можем произвести эксперимент с другим газом позднее и сначала решаем держать этот фактор постоянным, используя только чистый водород...

Прежде чем приступить к эксперименту, имеющему целью опре­делить, как связаны три фактора — температура, объем и давле­ние,— нам необходимо осуществить некоторые предварительные эксперименты, чтобы быть уверенными, что не существует никаких других существенных факторов. Мы можем подозревать, что неко­торые факторы будут существенными, а некоторые — нет. Напри­мер, является ли существенной форма сосуда, содержащего газ? Мы знаем, что в некоторых экспериментах (например, при рас­пределении электрического заряда и его поверхностного потен­циала) форма предмета имеет важное значение. Здесь же нетрудно определить, что форма сосуда несущественна, важен только его объем.

Мы можем использовать наше знание природы, чтобы исклю­чить многие другие факторы. Астролог может войти в лабора­торию и спросить: «Вы проверили, как сегодня расположены планеты? Их положение может иметь некоторое влияние на ваш эксперимент». Мы рассматриваем это как несущественный фак­тор, ибо полагаем, что планеты находятся слишком далеко, чтобы оказать такое влияние.

Наше предположение о несущественности влияния планет является верным, но было бы ошибкой думать, что мы можем автоматически исключить различные факторы просто потому, что, как мы полагаем, они не оказывают никакого влияния на про­цесс. Не существует никакого способа убедиться в этом, пока не будут проведены экспериментальные испытания. Вообразите, что вы живете до изобретения радио. Кто-то ставит на ваш стол ящик и говорит вам о том, что если кто-либо поет в некотором месте на расстоянии тысячи миль отсюда, то вы услышите, как прибор в этом ящике исполняет точно ту же самую песню, в том же самом тоне и ритме. Поверите ли вы этому? Вероятно, вы ответите: «Невозможно. Не существует никаких электриче­ских проводов, связанных с этим ящиком. Из моего опыта я знаю, что ничто происходящее за тысячу миль отсюда не может иметь какого-либо влияния на происходящее в этой комнате».

Это точно то же самое рассуждение, посредством которого мы пришли к выводу, что положение планет не может влиять на наш эксперимент с водородом! Очевидно, мы должны быть очень осторожными. Иногда существуют воздействия, о которых мы не можем знать, пока они не обнаружены. По этой причине самый первый шаг в нашем эксперименте, определяющий существен­ные факторы, иногда является трудным. Кроме того, этот шаг часто явно не указывается в отчетах об исследованиях. Ученый описывает только приборы, которые он использует, эксперимент, который осуществляет, и то, что он открывает в отношениях между некоторыми величинами. Он не добавляет к этому: «И кроме того, я обнаружил, что такие-то факторы не оказывают влияния на результат». В большинстве случаев, когда область, в которой происходят исследования, достаточно известна, ученый будет счи­тать само собой разумеющимся, что другие факторы являются несущественными. Он может быть совершенно прав, но в новых областях следует быть крайне осторожным. Конечно, никто не будет считать, что на лабораторный эксперимент может повлиять то обстоятельство, смотрим ли мы на приборы с расстояния в де­сять дюймов или десять футов, или же находимся ли мы в добром или дурном расположении духа. Эти факторы, вероятно, несущест­венны, но абсолютно быть уверенными в этом мы не можем. Если кто-то подозревает, что эти факторы существенны, то должен быть проведен эксперимент, исключающий их.

Практические соображения будут удерживать нас, конечно, от испытания каждого фактора, который может быть существенным. Могут быть испытаны тысячи маловероятных возможностей, но просто не будет времени, чтобы исследовать их все. Мы долж­ны руководствоваться здравым смыслом и уточнять свои предпо­ложения, только если случится нечто неожиданное, заставляющее нас рассматривать в качестве существенного фактор, который мы прежде игнорировали. Будет ли цвет листьев на деревьях вне лаборатории влиять на длину волны света, который мы используем в эксперименте? Будут ли части прибора функционировать иначе в зависимости от того, находится ли их законный владелец в Нью-Йорке или Чикаго, или же в зависимости от его отношения к эксперименту? Очевидно, что мы не имеем времени, чтобы испы­тать такие факторы. Мы предполагаем, что духовное состояние владельца оборудования не имеет никакого физического влияния на эксперимент, но члены некоторых племен могут думать иначе. Они могут верить в то, что боги будут помогать эксперименту, если владелец прибора хочет, чтобы эксперимент был осущест­влен, и не будут, если собственник этого не хочет. Существующие верования могут, таким образом, влиять на то, что считать сущест­венным. В большинстве случаев ученый, размышляя о проблеме, делает обычные догадки о том, какие факторы заслуживают рассмотрения, и, возможно, даже осуществит несколько предва­рительных экспериментов, чтобы исключить факторы, в которых он сомневается.

Предположим, что мы решили, что существенными факто­рами в нашем эксперименте с водородом являются температура, давление и объем. В нашем сосуде состав и общее количество газа остаются теми же самыми, потому что мы держим сосуд закрытым. Мы свободны, таким образом, в проверке отношения между тремя факторами. Если мы поддерживаем постоянную температуру, но увеличиваем давление, тогда мы обнаруживаем, что объем изменяется обратно пропорционально давлению, то есть если мы удвоим давление, то объем уменьшится на половину преж­ней величины. Если мы утроим давление, то объем уменьшится на одну треть. Этот известный эксперимент был осуществлен в семнадцатом столетии ирландским физиком Робертом Бойлем. Закон, который он открыл, известный как закон Бойля, утверж­дает, что если температура газа в замкнутом сосуде остается постоянной, то произведение объема на давление есть константа.

Затем мы сохраняем постоянным давление (помещая тот же самый груз на поршень), но изменяем температуру. Тогда мы обнаруживаем, что объем увеличивается, когда газ нагревается, и уменьшается, когда газ охлаждается. Путем измерения объема и температуры мы найдем, что объем пропорционален темпера­туре. (Эту зависимость иногда называют законом Шарля в честь французского ученого Жака Шарля.) Мы должны позаботиться о том, чтобы не использовать при измерении ни шкалу Фарен­гейта, ни Цельсия, а взять шкалу, в которой нуль является «абсо­лютным нулем» или равен —273° шкалы Цельсия. Это — «абсо­лютная шкала», или «шкала Кельвина», введенная лордом Кель­вином, английским физиком девятнадцатого века. Теперь легко приступить к экспериментальной верификации общего закона, охватывающего все три фактора. Такой закон фактически пред­полагается двумя законами, которые мы уже получили, но общий закон имеет большее эмпирическое содержание, чем два закона, взятые вместе. Этот общий закон утверждает, что если коли­чество газа в замкнутом сосуде остается постоянным, то произве­дение давления на объем равно произведению температуры на R (P×V=T×R). В этом уравнении R представляет константу, которая меняется в зависимости от количества взятого газа. Таким образом, этот общий закон выражает отношение между всеми тремя величинами и является более эффективным для предсказаний, чем два других объединенных закона. Если мы знаем значе­ния любых двух из трех переменных величин, тогда мы можем легко предсказать третью.

Этот пример простого эксперимента показывает, как можно сохранить некоторые факторы постоянными, чтобы исследовать зависимости, существующие между другими факторами. Он также показывает — и это очень важно — плодотворность количествен­ных понятий. Законы, определяемые с помощью этого экспери­мента, предполагают умение измерять различные величины. Если бы это было не так, тогда пришлось бы сформулировать законы качественным образом. Такие законы будут значительно слабее и менее полезны для предсказаний. Без численных значений для давления, объема и температуры самое большее, что можно ска­зать об одной из величин,— это то, что она остается той же самой, или увеличивается, или уменьшается. Так, мы могли бы сформулировать закон Бойля следующим образом: если темпера­тура газа в замкнутом сосуде остается той же самой, а давление увеличивается, тогда объем будет уменьшаться. Когда давление уменьшается, объем увеличивается. Это, конечно, закон. Некото­рым образом он даже похож на закон Бойля, но он, однако, значи­тельно слабее его, потому что не дает нам возможности предска­зать значение величины. Мы можем предсказать только то, что величина будет возрастать, уменьшаться или останется постоян­ной...

Мы видим, следовательно, как мало можно было бы сделать предсказаний и какими грубыми были бы объяснения, если бы наука ограничивалась качественными законами. Количественные законы в огромной степени превосходят их. Для таких законов мы должны, разумеется, иметь количественные понятия...