3. Тепловые машины и стрела времени

.

3. Тепловые машины и стрела времени

Сравнивая механические устройства с тепловыми машинами, например с паровозными котлами с их рас­каленными докрасна топками, мы наглядно видим брешь, отделяющую классический век от технологии XIX в. Тем не менее физики поначалу думали, что эту брешь можно игнорировать, что тепловые машины удастся описывать так же, как некогда механические, пренебре­гая тем решающим фактом, что использованное тепловой машиной горючее исчезает навсегда. Но вскоре по­добному благодушию пришел конец. Для классической механики символом природы были часы, для индустри­ального века таким символом стал резервуар энергии, запас которого всегда грозил иссякнуть. Мир горит как огромная печь; энергия, хотя она и сохраняется, непре­рывно рассеивается.

Первоначальную формулировку второго начала тер­модинамики, которая позволила впервые количественно выразить необратимость, предложил в 1824 г. Сади Карно — до того, как Майер (1842) и Гельмгольц (1847) сформулировали в общем виде закон сохранения энер­гии. Карно, продолжая работу своего отца Лазара Карно, автора весьма авторитетного трактата по теории машин (механических устройств), занимался анализом работы тепловой машины.

При описании механических устройств движение предполагается заданным. На современном языке это соответствует сохранению энергии и импульса. Движение лишь претерпевает превращения и передается другим телам. Но аналогия между механическим устройством и тепловой машиной была естественной для Сади Кар­но, поскольку он, как и большинство ученых его време­ни, предполагал, что тепло сохраняется подобно тому, как сохраняется механическая энергия.

Вода, падающая с одного уровня на другой, способ­на приводить в движение мельничное колесо. Аналогич­ным образом Сади Карно предположил, что существуют два источника, один из которых отдает тепло системе двигателя, а второй, находящийся при другой темпера­туре, поглощает тепло, отданное первым. Таким обра­зом, работу тепловой машины Сади Карно представил как движение тепла через машину между двумя источ­никами, находящимися при различных температурах. Иначс говоря, работу, производимую машиной, по Кар­но, совершает движущая сила огня.

Сади Карно поставил перед собой те же вопросы, какие задавал его отец. У какой машины коэффициент полезного действия будет наиболее высоким? Каковы источники потерь? При каких процессах тепло распро­страняется, не производя работы? Лазар Карно пришел к заключению, что для достижения наивысшего коэф­фициента полезного действия при постройке и эксплуа­тации механического устройства следует сводить до ми-

Рис. 2. Цикл Карно на диаграмме давление—объем (идеаль­ная тепловая машина, функционирующая между двумя источниками: нагревателем при температуре ТH и холодильником при температуре tl, TH>Tl.). При переходе из состояния a в состояние b происходит изотермический процесс: система, температура которой поддержи­вается равной температуре нагревателя Тн, поглощает тепло и рас­ширяется. При переходе из состояния b в состояние с происходит адиабатический процесс: теплоизолированная система продолжает расширяться и температура понижается с ТH до tl. На этих двух стадиях система производит механическую работу. При переходе из состояния с в состояние d происходит еще один изотермический процесс: система, температура которой поддерживается равной тем­пературе холодильника tl, сжимается и выделяет тепло. При пере­ходе из состояния d в а происходит еще один адиабатический пропесс: теплоизолированная система сжимается и температура ее по­вышается с tl до ТH.

нимума удары, трение и резкие, скачкообразные изме­нения скорости, т. е., короче говоря, все, что происходит при внезапном соприкосновении тел, движущихся с раз­личными скоростями. Рассуждая так, Лазар Карно лишь следовал физике своего времени, считавшей, что только непрерывные изменения консервативны, а все скачко­образные изменения движения сопряжены с необратимой потерей «живой силы». Заключение Сади Карно было аналогичным: идеальная тепловая машина вместо того, чтобы избегать любых контактов между телами, движущимися с различными скоростями, должна избе­гать любых контактов между телами, имеющими раз­личные температуры.

Следовательно, рассуждал Сади Карио, цикл необ­ходимо строить так, чтобы ни одно изменение темпера­туры не было обусловлено прямым потоком тепла меж­ду двумя телами, находящимися при различных темпе­ратурах. Поскольку такие потоки не производили бы никакой механической работы, они приводили бы только к снижению кпд.

Идеальный цикл Kарно представляет собой, таким образом, весьма хитроумное приспособление, позволяю­щее достигать парадоксального результата: переноса тепла между двумя источниками, находящимися при различных температурах, без прямого контакта между телами с различной температурой. Цикл Карно подраз­деляется на четыре стадии. На каждой из двух изотер­мических стадий система находится в контакте с одним из двух тепловых источников, а ее температура поддер­живается равной температуре этого источника. Нахо­дясь в контакте с горячим источником (нагревателем), система поглощает тепло и расширяется. Находясь в контакте с холодным источником (холодильником), си­стема теряет тепло и сжимается. Две изотермические стадии связаны между собой двумя стадиями, на кото­рых система изолирована от источников, т. е. тепло не поступает в систему и не покидает ее, но температура системы изменяется в результате соответственно рас­ширения и сжатия. Объем продолжает изменяться до тех нор, пока система не перейдет от температуры од­ного источника к температуре другого.

Весьма замечательно, что в приведенном выше опи­сании идеальной тепловой машины ни разу не упомина­ются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сго­рает уголь. Предложенная Сади Карно модель отража­ет лишь конечный результат горения: возможность под­держания разности температур между двумя источни­ками.

В 1850 г. Клаузиус дал новое описание цикла Кар­но — с точки зрения закона сохранения энергии. Он обнаружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно фор­мула для теоретического кпд отражают проблему, спе­цифическую для тепловых машин: необходимость про­цесса, компенсирующего превращение (в случае цикла Карно — охлаждение в контакте с источником, находя­щимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса, выражающие превра­щения энергии, оказались теперь объединенными новы­ми отношениями эквивалентности между воздействиями двух процессов — потока тепла между источниками и превращения тепла в работу — на состояние системы. Новая наука — термодинамика, — установившая связь между механическими и тепловыми эффектами, обрела существование.

Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, не­ограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карно, мы получаем, с одной стороны, произведенную механическую работу, а с дру­гой стороны, перенос тепла, причем то и другое связа­но между собой отношением эквивалентности. Эта эк­вивалентность действует в обоих отношениях. Обрат­ным ходом та же машина может восстановить началь­ную разность температур, затратив произведенную ра­боту. Невозможно построить тепловую машину только с одним источником тепла.

Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального зна­чения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффектив­ности тепловых машин.

Но с XVIII в. статус идеализации изменился. Опи­раясь на закон сохранения энергии, новое естествозна­ние стало претендовать на описание не только идеализаций, но и самой природы, включая «потери». Возник­ла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько сни­жают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термоди­намики.