3. Тепловые машины и стрела времени
.3. Тепловые машины и стрела времени
Сравнивая механические устройства с тепловыми машинами, например с паровозными котлами с их раскаленными докрасна топками, мы наглядно видим брешь, отделяющую классический век от технологии XIX в. Тем не менее физики поначалу думали, что эту брешь можно игнорировать, что тепловые машины удастся описывать так же, как некогда механические, пренебрегая тем решающим фактом, что использованное тепловой машиной горючее исчезает навсегда. Но вскоре подобному благодушию пришел конец. Для классической механики символом природы были часы, для индустриального века таким символом стал резервуар энергии, запас которого всегда грозил иссякнуть. Мир горит как огромная печь; энергия, хотя она и сохраняется, непрерывно рассеивается.
Первоначальную формулировку второго начала термодинамики, которая позволила впервые количественно выразить необратимость, предложил в 1824 г. Сади Карно — до того, как Майер (1842) и Гельмгольц (1847) сформулировали в общем виде закон сохранения энергии. Карно, продолжая работу своего отца Лазара Карно, автора весьма авторитетного трактата по теории машин (механических устройств), занимался анализом работы тепловой машины.
При описании механических устройств движение предполагается заданным. На современном языке это соответствует сохранению энергии и импульса. Движение лишь претерпевает превращения и передается другим телам. Но аналогия между механическим устройством и тепловой машиной была естественной для Сади Карно, поскольку он, как и большинство ученых его времени, предполагал, что тепло сохраняется подобно тому, как сохраняется механическая энергия.
Вода, падающая с одного уровня на другой, способна приводить в движение мельничное колесо. Аналогичным образом Сади Карно предположил, что существуют два источника, один из которых отдает тепло системе двигателя, а второй, находящийся при другой температуре, поглощает тепло, отданное первым. Таким образом, работу тепловой машины Сади Карно представил как движение тепла через машину между двумя источниками, находящимися при различных температурах. Иначс говоря, работу, производимую машиной, по Карно, совершает движущая сила огня.
Сади Карно поставил перед собой те же вопросы, какие задавал его отец. У какой машины коэффициент полезного действия будет наиболее высоким? Каковы источники потерь? При каких процессах тепло распространяется, не производя работы? Лазар Карно пришел к заключению, что для достижения наивысшего коэффициента полезного действия при постройке и эксплуатации механического устройства следует сводить до ми-
Рис. 2. Цикл Карно на диаграмме давление—объем (идеальная тепловая машина, функционирующая между двумя источниками: нагревателем при температуре ТH и холодильником при температуре tl, TH>Tl.). При переходе из состояния a в состояние b происходит изотермический процесс: система, температура которой поддерживается равной температуре нагревателя Тн, поглощает тепло и расширяется. При переходе из состояния b в состояние с происходит адиабатический процесс: теплоизолированная система продолжает расширяться и температура понижается с ТH до tl. На этих двух стадиях система производит механическую работу. При переходе из состояния с в состояние d происходит еще один изотермический процесс: система, температура которой поддерживается равной температуре холодильника tl, сжимается и выделяет тепло. При переходе из состояния d в а происходит еще один адиабатический пропесс: теплоизолированная система сжимается и температура ее повышается с tl до ТH.
нимума удары, трение и резкие, скачкообразные изменения скорости, т. е., короче говоря, все, что происходит при внезапном соприкосновении тел, движущихся с различными скоростями. Рассуждая так, Лазар Карно лишь следовал физике своего времени, считавшей, что только непрерывные изменения консервативны, а все скачкообразные изменения движения сопряжены с необратимой потерей «живой силы». Заключение Сади Карно было аналогичным: идеальная тепловая машина вместо того, чтобы избегать любых контактов между телами, движущимися с различными скоростями, должна избегать любых контактов между телами, имеющими различные температуры.
Следовательно, рассуждал Сади Карио, цикл необходимо строить так, чтобы ни одно изменение температуры не было обусловлено прямым потоком тепла между двумя телами, находящимися при различных температурах. Поскольку такие потоки не производили бы никакой механической работы, они приводили бы только к снижению кпд.
Идеальный цикл Kарно представляет собой, таким образом, весьма хитроумное приспособление, позволяющее достигать парадоксального результата: переноса тепла между двумя источниками, находящимися при различных температурах, без прямого контакта между телами с различной температурой. Цикл Карно подразделяется на четыре стадии. На каждой из двух изотермических стадий система находится в контакте с одним из двух тепловых источников, а ее температура поддерживается равной температуре этого источника. Находясь в контакте с горячим источником (нагревателем), система поглощает тепло и расширяется. Находясь в контакте с холодным источником (холодильником), система теряет тепло и сжимается. Две изотермические стадии связаны между собой двумя стадиями, на которых система изолирована от источников, т. е. тепло не поступает в систему и не покидает ее, но температура системы изменяется в результате соответственно расширения и сжатия. Объем продолжает изменяться до тех нор, пока система не перейдет от температуры одного источника к температуре другого.
Весьма замечательно, что в приведенном выше описании идеальной тепловой машины ни разу не упоминаются лежащие в основе его реализации необратимые процессы. Ни слова не говорится о печи, в которой сгорает уголь. Предложенная Сади Карно модель отражает лишь конечный результат горения: возможность поддержания разности температур между двумя источниками.
В 1850 г. Клаузиус дал новое описание цикла Карно — с точки зрения закона сохранения энергии. Он обнаружил, что необходимость в двух тепловых источниках (нагревателе и холодильнике) и выведенная Карно формула для теоретического кпд отражают проблему, специфическую для тепловых машин: необходимость процесса, компенсирующего превращение (в случае цикла Карно — охлаждение в контакте с источником, находящимся при более низкой температуре), для того чтобы вернуть машину к начальным механическим и тепловым условиям. Соотношения баланса, выражающие превращения энергии, оказались теперь объединенными новыми отношениями эквивалентности между воздействиями двух процессов — потока тепла между источниками и превращения тепла в работу — на состояние системы. Новая наука — термодинамика, — установившая связь между механическими и тепловыми эффектами, обрела существование.
Работа Клаузиуса наглядно показала, что мы не можем неограниченно использовать, казалось бы, неограниченный резервуар энергии, который предоставляет нам природа. Не все процессы, при которых энергия сохраняется, возможны. Например, невозможно создать разность энергий, не уничтожив при этом по крайней мере ее эквивалентность. В идеальном цикле Карно тепло, переносимое от одного источника к другому, есть та цена, которую приходится платить за производимую работу. Осуществив цикл Карно, мы получаем, с одной стороны, произведенную механическую работу, а с другой стороны, перенос тепла, причем то и другое связано между собой отношением эквивалентности. Эта эквивалентность действует в обоих отношениях. Обратным ходом та же машина может восстановить начальную разность температур, затратив произведенную работу. Невозможно построить тепловую машину только с одним источником тепла.
Клаузиуса так же, как и Карно, не интересовали потери, за счет которых кпд всех реальных тепловых машин ниже предсказываемого теорией идеального значения. Теория Клаузиуса так же, как и теория Карно, отвечает некоторой идеализации. Она указывает лишь предел, который устанавливает природа для эффективности тепловых машин.
Но с XVIII в. статус идеализации изменился. Опираясь на закон сохранения энергии, новое естествознание стало претендовать на описание не только идеализаций, но и самой природы, включая «потери». Возникла новая проблема, и в физику вошла необратимость. Как описать то, что происходит в реальной машине? Как включить в баланс энергии потери? Насколько снижают потери кпд реальной машины? Ответы на все эти вопросы проложили путь ко второму началу термодинамики.