5. Рождение энтропии

.

5. Рождение энтропии

В 1865 г. настал черед совершить скачок от техно­логии к космологии для Клаузиуса. Сначала он лишь переформулировал свои более ранние выводы, но при этом ввел новое понятие — энтропия. Первоначально Клаузиус намеревался четко разграничить понятия со­хранения и обратимости. В отличие от механических превращений, для которых обратимость и сохранение совпадают, при физико-химическом превращении энер­гия может сохраняться даже в том случае, если преоб­разование необратимо. Это, в частности, относится к трению, когда движение превращается в тепло, или к теплопроводности, описанной Фурье.

Мы уже знакомы с таким понятием, как «энергия». Она является функцией состояния системы, т. е. функ­цией, зависящей только от значений параметров (дав­ления, объема, температуры) , которые однозначно определяют состояние. Но нам необходимо выйти за рамки закона сохранения энергии и найти способ, позволяющий выразить различие между «полезными» обменами энер­гией в цикле Карно и «диссипированной» энергией, те­ряемой необратимо.

Именно такую возможность и предоставляет введен­ная Клаузиусом новая функция, получившая название «энтропия» и обычно обозначаемая буквой S.

Клаузиус, по-видимому, намеревался лишь записать в новом виде очевидное требование, состоящее в том, что в конце цикла тепловая машина должна возвра­щаться в начальное состояние. В первом определении энтропии основной акцент делался на сохранении: в кон­це каждого цикла, идеального или с потерями, функция состояния системы — энтропия — возвращается к своему начальному значению. Но параллель между энтропией и энергией заканчивается, стоит лишь нам отказаться от принятых идеализаций

Рассмотрим приращение энтропии dS за короткий интервал времени dt. В случае идеальной и реальной тепловой машины ситуация совершенно различная. В первом случае dS можно полностью выразить через теплообмен между машиной и окружающей средой. Можно поставить специальные опыты, в которых систе­ма будет отдавать тепло вместо того, чтобы поглощать его. Соответствующее приращение энтропии при этом лишь изменит знак. Такую составляющую полного при­ращения энтропии мы обозначим deS. Она обратима в том смысле, что может быть и положительной, и отри­цательной. В реальных машинах мы сталкиваемся с со­вершенно иной ситуацией. В них, ломимо обратимого теплообмена, происходят необратимые процессы: тепло­вые потери, трение и т. д. Они приводят к увеличению энтропии, или производству энтропии, внутри системы. Увеличение энтропии, которое мы обозначим diS, не может изменять знак при обращении теплообмена с внешним миром. Как все необратимые процессы (на­пример, теплопроводность), производство энтропии всег­да происходит в одном и том же направлении. Иначе говоря, величина diS может быть только положительной или обращаться в нуль в отсутствие необратимых про­цессов. Заметим, что положительность diS—вопрос со­глашения: с тем же успехом мы могли бы считать ве­личину diS отрицательной. Важно другое: изменение энтропии монотонно; производство энтропии не может изменять знак во времени.

Выбор обозначений deS и diS призван напоминать читателю, что первый член относится к обмену энерги­ей (по-английски exchange — e) с внешним миром, а второй — к необратимым процессам внутри (по анг­лийски inside — i) системы. Таким образом, полное при­ращение энтропии dS представимо в виде суммы двух членов deS и diS, имеющих различный физический смысл.

Чтобы понять одну специфическую особенность тако­го разложения приращения энтропии в сумму двух членов, полезно применить наши рассуждения к энергии. Обозначим энергию через Е, и пусть dE — приращение энергии за короткий интервал времени dt. Разумеется, ничто не мешает нам представить dE в виде суммы чле­на deE, описывающего обмен энергией с внешним миром, и члена diE, связанного с «внутренним производством» энергии. Но закон сохранения энергии утверждает, что энергия никогда не «производится», а лишь переносится с одного места на другое. Следовательно, полное при­ращение энергии dE сводится к deE. С другой стороны, если мы возьмем какую-нибудь несохраняющуюся вели­чину, например количество молекул водорода в некото­ром сосуде, то такая величина может изменяться и в результате добавления водорода в сосуд, и вследствие химических реакций, протекающих в сосуде. Знак «про­изводства» несохраняющейся величины заранее не опре­делен. В зависимости от обстоятельств мы можем и про­изводить молекулы водорода, и разрушать их, «отдавая» атомы водорода другим химическим соединениям. Спе­цифическая особенность второго начала состоит в том, что член diS, описывающий производство энтропии, всегда положителен. Производство энтропии отражает необратимые изменения, происходящие внутри системы.

Клаузиусу удалось найти количественное выражение для потока энтропии deS через тепло, поглощаемое (или отдаваемое) системой. В мире, где безраздельно господ­ствуют понятия обратимости и сохранения, вывод такой зависимости имел первостепенное значение. Что же ка­сается необратимых процессов, участвующих в производ­стве энтропии, то Клаузиус смог установить лишь не­равенство diS/dt>0. Но и оно было важным шагом впе­ред, поскольку позволяло проводить различие между потоком энтропии и производством энтропии не только для цикла Kapно, но и для других термодинамических систем. Для изолированной системы, которая ничем не обменивается с окружающей средой, поток энтропии, по определению, равен нулю. Остается лишь член, опи­сывающий производство энтропии, а энтропия системы может только возрастать или оставаться постоянной. В этом случае сам собой отпадает вопрос о необрати­мых изменениях, рассматриваемых как приближение к обратимым изменениям: возрастающая энтропия со­ответствует самопроизвольной, эволюции системы. Энт­ропия становится, таким образом, «показателем эволю­ции», или, по меткому выражению Эддингтона, «стре­лой времени». Для изолированных систем будущее всегда расположено в направлении возрастания энтропии.

Какая система может быть изолирована лучше, чем наша Вселенная? Эта идея легла в основу космологиче­ской формулировки первого и второго начал термоди­намики, предложенной Клаузнусом в 1865 г.:

Die Energie der Welt ist konstant.

Die Entropie der Welt strebt einem Maximum zu.

Утверждение о том, что энтропия изолированной си­стемы возрастает до максимального значения, выходит за рамки той технологической проблемы, решение ко­торой привело к созданию термодинамики. Возрастаю­щая энтропия перестает быть синонимом потерь. Теперь она относится к естественным процессам внутри систе­мы. Под влиянием этих процессов система переходит в термодинамическое «равновесие», соответствующее состоянию с максимумом энтропии.

В главе 1 мы отмечали элемент некоторой неожидан­ности в открытии Ньютоном универсальных законов ди­намики. Когда Сади Карно сформулировал свои законы для идеальных тепловых машин, он не мог даже вообра­зить, что его работа приведет к концептуальной револю­ции в физике.

Обратимые преобразования принадлежат классиче­ской науке в том смысле, что определяют возможность воздействия на систему, управления системой. Динами­ческим объектом можно управлять, варьируя начальные условия. Аналогичным образом термодинамическим объектом, определяемым в терминах обратимых пре­образований, можно управлять, изменяя граничные усло­вия: любая система, находящаяся в состоянии термоди­намического равновесия, при постепенном изменении температуры, объема или давления проходит через се­рию равновесных состояний и при любом обращении производимых над ней манипуляций возвращается в на­чальное состояние. Обратимый характер таких измене­ний и управление объектом через граничные условия— процессы взаимозависимые. С этой точки зрения необра­тимость «отрицательна»: она проявляется в форме не­управляемых изменений, происходящих в тех случаях, когда система выходит из-под контроля. Наоборот, не­обратимые процессы можно рассматривать как последние остатки самопроизвольной внутренней активности, проявляемой природой, когда человек с помощью экс­периментальных устройств пытается обуздать ее.

Таким образом, «отрицательное» свойство — диссипа­ция — показывает, что в отличие от динамических объ­ектов термодинамические объекты управляемы не до конца. Иногда они «выходят из повиновения», претерпе­вая самопроизвольное изменение.

Для термодинамической системы все изменения не эквивалентны. В этом и состоит физический смысл раз­ложения dS=deS+diS. Самопроизвольное изменение diS, направленное к равновесию, отличается от измене­ния deS, определяемого и управляемого варьированием граничных условий (например, температуры окружаю­щей среды). В случае изолированной системы равно­весие выступает в роли притягивающего множества, или «аттрактора», неравновесных состояний. Следова­тельно, наше первоначальное утверждение допускает обобщение: эволюция к состоянию-аттрактору отличает­ся от всех других изменений, в особенности от измене­ний, обусловленных варьированием граничных условий.

Макс Планк часто подчеркивал различие между двумя типами изменений, встречающихся в природе. Природа, писал Планк, по-видимому, отдает «предпочте­ние» определенным состояниям. Необратимое увеличе­ние энтропии diS/dt описывает приближение системы к состоянию, неодолимо «притягивающему» ее, предпочи­таемому ей перед другими, — состоянию, из которого система не выйдет по «доброй воле».

«Согласно этому способу выражения, в природе не­возможны те процессы, при которых природа дает мень­шее предпочтение конечному состоянию, чем начально­му. Предельный случай представляет обратимые про­цессы; в них природа испытывает одинаковое предпочте­ние как к начальному, так и к конечному состоянию, и поэтому переход из одного состояния в другое может происходить в обоих направлениях».

Сколь чуждым выглядит такой язык по сравнению с языком динамики! В динамике система изменяется вдоль заданной раз и навсегда траектории, не забывая начальную точку (так как начальные условия опреде­ляют всю траекторию при любых значениях времени). В случае же изолированной системы все неравновесные ситуации порождают эволюцию к равновесному состоя­нию одного и того же типа. К моменту достижения рав­новесия система забывает свои начальные условия, т. е. способ, которым она была приготовлена.

Удельная теплоемкость или сжимаемость системы, находящейся в состоянии термодинамического равнове­сия, являются свойствами, не зависящими от того, как была построена система. Это счастливое обстоятельство значительно упрощает исследование физических состоя­ний вещества. Действительно, сложные системы состо­ят из огромного числа частиц. С точки зрения динами­ки воспроизвести любое состояние такой системы не­возможно из-за бесконечного разнообразия состояний, в которых она может находиться.

Мы сталкиваемся, таким образом, с двумя принци­пиально различными описаниями: динамикой, примени­мой к миру движения, и термодинамикой, наукой о слож­ных системах, наделенных внутренней способностью эволюционировать в сторону увеличения энтропии. Столь резкая противоположность двух описаний немедленно порождает вопрос о том, какая взаимосвязь существует между ними. Эта проблема дискутируется в науке с тех пор, как были сформулированы начала термодинамики.