2. Линейная термодинамика
.2. Линейная термодинамика
В 1931 г. Ларс Онсагер открыл первые общие соотношения неравновесной термодинамики в линейной, слабо неравновесной области. Это были знаменитые «соотношения взаимности». Суть их чисто качественно сводится к следующему: если сила «один» (например, градиент температуры) для слабо неравновесных ситуаций воздействует на поток «два» (например, на диффузию), то сила «два» (градиент концентрации) воздействует на поток «один» (поток тепла). Соотношения взаимности неоднократно подвергались экспериментальной проверке. Например, всякий раз, когда градиент температуры индуцирует диффузию вещества, мы обнаруживаем, что градиент концентрации вызывает поток тепла через систему.
Следует особо подчеркнуть, что соотношения Онсагера носят общий характер. Несущественно, например, происходят ли необратимые процессы в газообразной, жидкой или твердой среде. Соотношения взаимности выполняются независимо от допущений относительно агрегатного состояния вещества.
Соотношения взаимности Онсагера были первым значительным результатом в термодинамике необратимых процессов. Они показали, что предмет этой новой науки не некая плохо определенная «ничейная» земля, а заслуживает внимания ничуть не меньше, чем предмет традиционной равновесной термодинамики, не уступая последнему в плодотворности. Если равновесная термодинамика была достижением XIX в., то неравновесная термодинамика возникла и развивалась в XX в. Вывод соотношений взаимности Онсагера ознаменовал сдвиг интересов от равновесных явлений к неравновесным.
Нельзя не упомянуть и о втором общем результате линейной неравновесной термодинамики. Нам уже приходилось говорить о термодинамических потенциалах, экстремумы которых соответствуют состояниям равновесия, к которому необратимо стремится термодинамическая эволюция. Для изолированной системы потенциалом является энтропия S, для замкнутой системы с заданной температурой — свободная энергия F. Термодинамика слабо неравновесных систем также вводит свой термодинамический потенциал. Весьма интересно, что таким потенциалом является само производство энтропии Р. Действительно, теорема о минимуме производства энтропии утверждает, что в области применимости соотношений Онсагера, т. е. в линейной области, система эволюционирует к стационарному состоянию, характеризуемому минимальным производством энтропии, совместимым с наложенными на систему связями. Эти связи определяются граничными условиями. Например, может возникнуть необходимость поддерживать две точки системы при заданных различных температурах или организовать поток, который бы непрерывно подводил в реакционную зону исходные вещества и удалял продукты реакции.
Стационарное состояние, к которому эволюционирует система, заведомо является неравновесным состоянием, в котором диссипативные процессы происходят с ненулевыми скоростями. Но поскольку это состояние стационарно, все величины, описывающие систему (такие, как температура, концентрации), перестают в нем зависеть от времени. Не зависит от времени в стационарном состоянии и энтропия системы. Но тогда изменение энтропии во времени становится равным нулю: dS=0. Как мы уже знаем, полное приращение энтропии состоит из двух членов: потока энтропии deS и положительного производства энтропии diS; поэтому из равенства dS==0 следует, что deS=—diS<0. Поступающий из окружающей среды поток тепла или вещества определяет отрицательный поток энтропии deS, который компенсируется производством энтропии diS из-за наобратимых процессов внутри системы. Отрицательный поток энтропии deS означает, что система поставляет энтропию внешнему миру. Следовательно, в стационарном состоянии активность системы непрерывно увеличивает энтропию окружающей среды. Все сказанное верно для любых стационарных состояний. Но теорема о минимуме производства энтропии утверждает нечто большее: то выделенное стационарное состояние, к которому стремится система, отличается тем, что в нем перенос энтропии в окружающую среду настолько мал, насколько это позволяют наложенные на систему граничные условия. В этом смысле равновесное состояние соответствует тому частному случаю, когда граничные условия допускают исчезающе малое производство энтропии. Иначе говоря, теорема о минимуме производства энтропии выражает своеобразную «инерцию» системы: когда граничные условия мешают системе перейти в состояние равновесия, она делает лучшее из того, что ей остается, — переходит в состояние энтропии, т. е. в состояние, которое настолько близко к состоянию равновесия, насколько это позволяют обстоятельства.
Таким образом, линейная термодинамика описывает стабильное, предсказуемое поведение систем, стремящихся к минимальному уровню активности, совместимому с питающими их потоками. Из того, что линейная неравновесная термодинамика так же, как и равновесная термодинамика, допускает описание с помощью потенциала, а именно производства энтропии, следует, что и при эволюции к равновесию, и при эволюции к стационарному состоянию система «забывает» начальные условия. Каковы бы ни были начальные условия, система рано или поздно перейдет в состояние, определяемое граничными условиями. В результате реакция такой системы на любое изменение граничных условий становится предсказуемой.
Мы видим, что в линейной области ситуация остается, по существу, такой же, как и в равновесной. Хотя производство энтропии не обращается в нуль, оно тем не менее не мешает необратимому изменению отождествляться с эволюцией к состоянию, полностью выводимому из общих законов. Такое «становление» неизбежно приводит к уничтожению любого различия, любой специфичности. Карно или Дарвин? Парадокс, на который мы обратили внимание в гл. 4, остается в силе. Между появлением естественных организованных форм, с одной стороны, и тенденцией к «забыванию» начальных условий наряду с возникающей при этом дезорганизацией — с другой, все еще существует зияющая брешь.