4. За порогом химической неустойчивости

.

4. За порогом химической неустойчивости

Изучение химических неустойчивостей в наши дни стало довольно обычным делом. И теоретические, и экс­периментальные исследования ведутся во многих инсти­тутах и лабораториях. Как мы увидим, эти исследования представляют интерес для широкого круга ученых — не только для математиков, физиков, химиков и биологов, но и для экономистов и социологов.

В сильно неравновесных условиях за порогом хими­ческой неустойчивости происходят различные новые яв­ления. Для того чтобы описать их подробно, полезно на­чать с упрощенной теоретической модели, разработан­ной в последнее десятилетие в Брюсселе. Американские ученые назвали эту модель «брюсселятором», и это на­звание так и прижилось в научной литературе. (Геогра­фические ассоциации, по-видимому, стали правилом в этой области: помимо «брюсселятора», существует «оре-гонатор» и даже самый юный «палоальтонатор»!) Опи­шем кратко «брюсселятор». Ранее мы уже отмечали те стадии реакции, которые ответственны за неустойчи­вость (см. рис. 3). Вещество Х образуется из вещества А и превращается в вещество Е. Оно является «партне­ром» по кросс-катализу вещества Y: Х образуется из Y в результате тримолекулярной стадии, а Y образуется в результате реакции между Х и веществом В.

В этой модели концентрации веществ A, В, D и Е за­даны (и являются так называемыми управляющими па­раметрами). Поведение системы исследуется при возрас­тающих значениях В. Концентрация А поддерживается постоянной. Стационарное состояние, к которому с наи­большей вероятностью эволюционирует такая система (состояние с dX/dt=dY/dt=0), соответствует концентра­циям Х0=А и Y0=B/A. В этом нетрудно убедиться, если выписать кинетические уравнения и найти стационарное состояние. Но как только концентрация В переходит критический порог (при прочих равных параметрах), это стационарное состояние становится неустойчивым. При переходе через критический порог оно становится неус­тойчивым фокусом, и система, выходя из этого фокуса, выходит, или «наматывается», на предельный цикл. Вместо того чтобы оставаться стационарными, концент­рации Х и Y начинают колебаться с отчетливо выражен­ной периодичностью. Период колебаний зависит от кине­тических постоянных, характеризующих скорость реак­ции, и граничных условий, наложенных на всю систему (температуры, концентрации веществ A, B и т. д.).

За критическим порогом система под действием флук­туаций спонтанно покидает стационарное состояние Х0=A, Y0=В/A. При любых начальных условиях она стре-

Рис. 5. Зависимость концентрации компоненты Х от концентра­ции компоненты Y. Фокус внутри цикла (точка S) — стационарное состояние, неустойчивое при B>(1+A). Все траектории (пять из которых представлены на графике) при любом начальном состоянии стремятся к одному и тому же предельному циклу.

мится выйти на предельный цикл, периодическое движе­ние по которому устойчиво. В результате мы получаем периодический химический процесс — химические часы. Остановимся на мгновение, чтобы подчеркнуть, сколь не­ожиданно такое явление. Предположим, что у нас име­ются молекулы двух сортов: «красные» и «синие». Из-за хаотического движения молекул можно было бы ожи­дать, что в какой-то момент в левой части сосуда ока­жется больше красных молекул, в следующий момент больше станет синих молекул и т. д. Цвет реакционной смеси с трудом поддается описанию: фиолетовый с бес­порядочными переходами в синий и красный. Иную кар­тину мы увидим, разглядывая химические часы: вся реакционная смесь будет иметь синий цвет, затем ее цвет резко изменится на красный, потом снова на синий и т. д. Поскольку смена окраски происходит через пра­вильные интервалы времени, мы имеем дело с когерент­ным процессом.

Столь высокая упорядоченность, основанная на со­гласованном поведении миллиардов молекул, кажется неправдоподобной, и, если бы химические часы нельзя было бы наблюдать «во плоти», вряд ли кто-нибудь по­верил, что такой процесс возможен. Для того чтобы одновременно изменить свой цвет, молекулы должны «каким-то образом» поддерживать связь между собой. Система должна вести себя как единое целое. К ключе­вому слову «связь», обозначающему весьма важное для многих областей человеческой деятельности (от хи­мии до нейрофизиологии) понятие, мы будем еще воз­вращаться неоднократно. Возможно, что именно диссипативные структуры представляют собой один из про­стейших физических механизмов связи (communication).

Между простейшим механическим осциллятором — пружиной — и химическими часами имеется важное различие. Химические часы обладают вполне определенной периодичностью, соответствующей тому предельному циклу, на который наматывается их траектория. Что же касается пружины, то частота ее колебаний зависит от амплитуды. С этой точки зрения химические часы как хранители времени отличаются большей надежностью, чем пружина.

Но химические часы — отнюдь не единственный тип самоорганизации. До сих пор мы пренебрегали диффу­зией. В своих рассуждениях мы неизменно предполагали, что все вещества равномерно распределены по всему реакционному пространству. Разумеется, такое допуще­ние не более чем идеализация: небольшие флуктуации всегда создают неоднородности в распределении кон­центраций и, следовательно, способствуют возникнове­нию диффузии. Следовательно, в уравнениях, описываю­щих химические реакции, необходимо учитывать диффу­зию. Уравнения типа «реакция с диффузией» для «брюсселятора» обладают необычайно богатым запасом реше­ний, отвечающих качественно различным типам поведе­ния системы. Если в равновесном и в слабо неравновес­ном состояниях система остается пространственно одно­родной, то в сильно неравновесной области появление новых типов неустойчивости, в том числе усиление флук­туаций, нарушает начальную пространственную симметрию. Таким образом, колебания во времени (химические часы) перестают быть единственным типом диссипативных структур, которые могут возникать в системе; в сильно неравновесной области могут появиться, напри­мер, колебания не только временные, но и пространст­венно-временные. Они соответствуют волнам концентра­ций химических веществ Х и Y, периодически проходя­щим по системе. Кроме того, в системе, особенно в тех случаях, когда коэффициенты диффузии веществ Х и Y сильно отличаются друг от друга, могут устанавливать­ся стационарные, не зависящие от времени режимы и возникать устойчивые пространственные структуры.

Здесь нам необходимо еще раз остановиться: на этот раз для того, чтобы подчеркнуть, как сильно спонтанное образование пространственных структур противоречит законам равновесной физики и принципу порядка Больцмана. И в этом случае число комплексов, соответствую­щих таким структурам, чрезвычайно мало по сравнению с числом комплексов, отвечающих равномерному рас­пределению. Но неравновесные процессы могут приво­дить к ситуациям, кажущимся немыслимыми с класси­ческой точки зрения.

При переходе от одномерных задач к двухмерным или трехмерным число качественно различных диссипативных структур, совместимых с заданным набором гранич­ных условий, возрастает еще больше. Например, в двух­мерной области, ограниченной окружностью, может воз­никнуть пространственно неоднородное стационарное со­стояние с выделенной осью. Перед нами новый, необы­чайно интересный процесс нарушения симметрии, особен­но если мы вспомним, что одна из первых стадий в морфогенезе зародыша — образование градиента в системе. Такого рода проблемы мы еще рассмотрим и в этой гла­ве, и в гл. 6.

До сих пор мы предполагали, что концентрации А, В, D и Е (наши управляющие параметры) равномерно распределены по всей реакционной системе. Стоит лишь нам отказаться от этого упрощения, как возникают но­вые явления. Например, система принимает «естествен­ные размеры», зависящие от определяющих параметров. Тем самым система определяет свой внутренний мас­штаб, т. е. размеры области, занятой пространственными структурами, или часть пространства, в пределах кото­рой проходят периодические волны концентраций.

 

Рис. 6. Химические полны, смоделированные на ЭВМ. Последо­вательные стадии эволюции пространственного распределения кон­центрации компоненты X в тримолекулярной модели «брюсселятор». При t=3,435 восстановилось такое же распределение концентраций, как при t=0. Концентрации компонент А и В равны соответствен­но 2 и 5,45 (В>[1+А]). Коэффициенты диффузии для Х и Y соот­ветственно равны 8×10 и 4×10.

 

Рис. 7. Стационарное состояние с выделенной осью (результат численного моделирования). Концентрация X есть функция геомет­рических координат р, q в горизонтальной плоскости. Стрелкой ука­зано место, где было возмущено неустойчивое однородное решение (X0, Y0).

Все перечисленные выше режимы дают весьма непол­ную картину необычайного многообразия явлений, воз­никающих в сильно неравновесной области. Упомянем хотя бы о множественности стационарных состояний. При заданных граничных условиях в сильно нелинейной си­стеме могут существовать не одно, а несколько стационар­ных состояний, например одно состояние с богатым со­держанием вещества X, а другое — с бедным содержани­ем того же вещества. Переход из одного состояния в другое играет важную роль в механизмах управления, встречающихся в биологических системах.

Начиная с классических работ Ляпунова и Пуанкаре, некоторые характерные точки и линии, а именно фокусы и предельные циклы, известны математикам как аттрак­торы устойчивых систем. Новым является то, что эти понятия качественной теории дифференциальных урав-

 

Рис. 8. а) Концентрация иона бромида в реакции Белоусова— Жаботинского в моменты времени t1 и t1+T (см.: Simoyi R. Н., Wolf A., Swinney Н. L. Phys. Rev. Letters, 1982, 49, p. 245; Hirsch J., Condensed Matter Physics и по данным численных расчетов из Physics Today, 1983, May, p. 44—52).

6) Траектории аттрактора, вычисленные Хао Байлинем для «брюсселятора» при периодическом подводе извне компоненты Х (личное сообщение).

 

нений применимы к химическим системам. В этой связи заслуживает быть особо отмеченным тот факт, что пер­вая работа по математической теории неустойчивостей в системе реакций с диффузией была опубликована Тьюрингом в 1952 г. Сравнительно недавно были обна­ружены новые типы аттракторов. Они появляются толь­ко при большем числе независимых  переменных (в «брюсселяторе» число независимых переменных равно двум: это переменные концентрации Х и Y). В частности, в трехмерных системах появляются так на­зываемые странные аттракторы, которым уже не соот­ветствует периодическое движение.

            На рис. 8 представлены результаты численных расче­тов Хао Байлиня, дающие общее представление об очень    

Рис. 9. Схема химического реактора, используемого при иссле­довании колебаний в реакции Белоусова—Жаботинского (однород­ность реакционной смеси обеспечивает перемешивающее устройство). В реакции участвуют более тридцати продуктов и промежуточных соединений. Эволюция различных путей реакции зависит (помимо других факторов) от концентраций исходных веществ, регулируемых насосами на входе в реактор.

сложной структуре такого странного аттрактора для мо­дели, обобщающей «брюсселятор» на случай периодиче­ского подвода извне вещества X. Замечательно, что большинство описанных нами типов поведения реально наблюдалось в неорганической химии и в некоторых био­логических системах.

В неорганической химии наиболее известным приме­ром колебательной системы является реакция Белоусова—Жаботинского, открытая в начале 50-х гг. нашего века. Соответствующая схема реакций, получившая на­звание орегонатор, была предложена Нойесом и сотруд­никами. По существу, она аналогична «брюсселятору», но отличается большей сложностью. Реакция Белоусова—Жаботинского состоит в окислении органической (малоновой) кислоты броматом калия в присутствии со­ответствующего катализатора — церия, марганца или ферроина.

В различных экспериментальных условиях у одной и той же системы могут наблюдаться различные формы самоорганизации — химические часы, устойчивая прост­ранственная дифференциация или образование волн хи­мической активности на макроскопических расстояни­ях.

Обратимся теперь к самому интересному вопросу: что дают все эти результаты для понимания функциониро­вания живых систем?