7. Каскады бифуркаций и переходы к хаосу
.7. Каскады бифуркаций и переходы к хаосу
В предыдущем разделе мы занимались рассмотрением только первой, или, как предпочитают говорить математики, первичной, бифуркации, которая возникает, когда мы вынуждаем систему перейти порог устойчивости. Далеко не исчерпывая новые решения, которые при этом могут появиться, первичная бифуркация приводит к появлению лишь одного характерного времени (периода предельного цикла) или одной характерной длины. Для того чтобы получить всю картину пространственно-временной активности, наблюдаемой в химических или биологических системах, необходимо продвинуться по бифуркационной диаграмме дальше.
Мы уже упоминали о явлениях, возникающих в результате сложного взаимодействия огромного числа частот в гидродинамических или химических системах. Рассмотрим хотя бы ячейки Бенара, возникающие на определенном расстоянии от равновесия. При дальнейшем удалении от теплового равновесия конвективный поток начинает колебаться во времени. Чем дальше мы уходим от равновесия, тем больше частот появляется в колебаниях, пока наконец не произойдет переход в турбулентный режим. Взаимодействие колебаний с различными частотами создает предпосылки для возникновения больших флуктуаций. Область на бифуркационной диаграмме, определяемая значениями параметров, при которых возможны сильные флуктуации, обычно принято называть хаотической. Иногда порядок, или когерентность, чередуется с тепловым хаосом и неравновесным турбулентным хаосом. Так происходит, например, в случае неустойчивости Бенара: если увеличивать градиент температуры, то конфигурация конвективных потоков усложнится, появятся колебания, а при дальнейшем увеличение градиента упорядоченная структура исчезнет, уступив место хаосу. Не следует смешивать, однако, равновесный тепловой хаос с неравновесным турбулентным хаосом. В тепловом хаосе, возникающем в равновесных условиях, все характерные пространственные и временные масштабы микроскопического порядка. В турбулентном хаосе число макроскопических пространственных и временных масштабов столь велико, что поведение системы кажется хаотическим. В химии порядок и хаос связаны между собой сложными отношениями: упорядоченные (колебательные) режимы чередуются с хаотическими. Такая перемежаемость, например, наблюдалась в реакции Белоусова—Жаботинского как функция скорости потока.
Во многих случаях довольно трудно провести четкую границу между такими понятиями, как «хаос» и «порядок». К каким системам следует отнести, например, тропический лес: к упорядоченным или хаотическим? История любого вида животных может показаться случайной, зависящей от других видов и флуктуаций окружающей среды. Тем не менее трудно отделаться от впечатления, что общая структура тропического леса, например все многообразие встречающихся в нем видов животных и растений, соответствует некоторому архетипу порядка. Какой бы конкретный смысл мы ни вкладывали в термины «порядок» и «хаос», ясно, что в некоторых случаях последовательность бифуркации приводит к необратимой эволюции и детерминированность характеристических частот порождает все большую случайность, обусловленную огромным числом частот, участвующих в процессе.
Сравнительно недавно внимание ученых привлек необычайно простой путь к хаосу, получивший название последовательность Фейгенбаума. Обнаруженная Фейгенбаумом закономерность относится к любой системе, поведение которой характеризуется весьма общим свойством, а именно: в определенной области значений параметров система действует в периодическом режиме с периодом Т; при переходе через порог период удваивается и становится равным 2Т, при переходе через следующий порог период в очередной раз удваивается и становится равным 4Т и т. д. Таким образом, система характеризуется последовательностью бифуркаций удвоения периода. Последовательность Фейгенбаума — один из типичных маршрутов, ведущих от простого периодического режима к сложному апериодическому, наступающему в пределе при бесконечном удвоении периода. Фейгенбаум открыл, что этот маршрут характеризуется универсальными постоянными, значения которых не зависят от конкретных особенностей механизма, коль скоро система обладает качественным свойством удвоения периода. «Большинство поддающихся измерению свойств любой такой системы в этом апериодическом пределе может быть определено, по существу, без учета каких-либо специфических особенностей уравнения, описывающего каждую конкретную систему...»
В других случаях (например, в таком, который представлен на рис. 16) эволюция системы содержит как детерминистические, так и стохастические элементы.
Рис. 16. Временны'е колебания концентрации иона Вг в реакции Белоусова—Жаботинского. На диаграмме схематически изображена последовательность режимов, соответствующая качественным различиям. Все режимы изображены упрощенно. Экспериментальные данные свидетельствуют о существовании гораздо более сложных последовательностей режимов.
На рис. 17 мы видим, что при значении управляющего параметра порядка l6 система может находиться в большом числе устойчивых и неустойчивых режимов. «Историческая» траектория, по которой эволюционирует система при увеличении управляющего параметра, характеризуется чередованием устойчивых областей, где доминируют детерминистические законы, и неустойчивых областей вблизи точек бифуркации, где перед систе
Рис. 17. Бифуркационная диаграмма: стационарные решения как функции параметра бифуркации l. Если l<l1, то при любом значении l существует только одно стационарное состояние. Множество таких стационарных состояний образует ветвь а). Если же l=l1, то становятся возможными два других множества стационарных решений (ветви b) и b')).
Состояния, принадлежащие ветви b), неустойчивы, но становятся устойчивыми при l=l2, в то время как состояния, принадлежащие ветви a), становятся неустойчивыми. При l=l3 ветвь b') снова становится неустойчивой и возникают две другие устойчивые ветви.
При l=l4 неустойчивая ветвь достигает новой точки бифуркации, при переходе через которую возникают две новые ветви, остающиеся неустойчивыми до l=l5 и l=l6.
мой открывается возможность выбора одного из нескольких вариантов будущего. И детерминистический характер кинетических уравнений, позволяющих вычислить заранее набор возможных состояний и определить их относительную устойчивость, и случайные флуктуации, «выбирающие» одно из нескольких возможных состояний вблизи точки бифуркации, теснейшим образом взаимосвязаны. Эта смесь необходимости и случайности и составляет «историю» системы.