2. Флуктуации и корреляции
.2. Флуктуации и корреляции
Вернемся еще раз к химической реакции типа, рассмотренного в гл. 5. Пусть для большей конкретности мы имеем цепь реакций ADXDF. Приведенные в гл. 5 кинетические уравнения относятся к средним концентрациям. Чтобы подчеркнуть это, условимся писать áXñ вместо X. Естественно задать вопрос: какова вероятность того, что в данный момент времени концентрация вещества Х имеет то или иное значение? Ясно, что эта вероятность флуктуирует, поскольку флуктуирует число столкновений между молекулами различных веществ, участвующих в реакции. Нетрудно выписать уравнение, описывающее, как изменяется распределение вероятности Р (X, t) в результате процессов рождения и уничтожения молекул X. Для равновесных или стационарных систем это распределение вероятности можно вычислить. Начнем с результатов, которые удается получить для равновесных систем.
В равновесных условиях мы, по существу, открываем заново одно из классических распределений вероятности, известное под названием распределения Пуассона. Оно описано в любом учебнике теории вероятностей, поскольку выполняется в огромном числе самых различных случаев: например, по Пуассону, распределены количество вызовов, поступающих на телефонную станцию, время ожидания в ресторане, флуктуации концентрации частиц в жидкости или газе. Математическая формула, задающая распределение Пуассона, для нас сейчас не имеет значения. Мы хотели бы лишь подчеркнуть два аспекта этого важного распределения. Во-первых, оно приводит к закону больших чисел именно в том виде, в каком он сформулирован в предыдущем разделе; следовательно, в большой системе флуктуации допустимо считать пренебрежимо малыми. Во-вторых, закон больших чисел позволяет нам вычислять корреляции между числом молекул Х в двух точках пространства, находящихся на заданном расстоянии друг от друга. Как показывают вычисления, в равновесных условиях такая корреляция не существует. Вероятность одновременно найти молекулу Х в точке r и молекулу X' в точке r' (отличной от точки r) равна произведению вероятности найти молекулу X в точке r и вероятности найти молекулу X' в точке r' (мы рассматриваем случай, когда расстояние между точками r и r' велико по сравнению с радиусом межмолекулярного взаимодействия).
Один из наиболее неожиданных результатов недавних исследований состоял в том, что в неравновесной области ситуация резко изменяется. Во-первых, при подходе вплотную к точкам бифуркации флуктуации становятся аномально сильными и закон больших чисел нарушается. Этого следовало ожидать, так как в сильно неравновесной области система при прохождении точек бифуркации «выбирает» один из различных возможных режимов. Амплитуды флуктуаций имеют такой же порядок величины, как и средние макроскопические значения. Следовательно, различие между флуктуациями и средними значениями стирается. Кроме того, в случае нелинейных химических реакций того типа, который мы рассматривали в гл. 5, появляются дальнодействующие корреляции. Частицы, находящиеся на макроскопических расстояниях друг от друга, перестают быть независимыми. «Отзвуки» локальных событий разносятся по всей системе. Интересно отметить, что такие дальнодействующне корреляции появляются в самой точке перехода от равновесного состояния к неравновесному. В этом смысле потеря устойчивости равновесным состоянием напоминает фазовый переход, с той лишь особенностью, что амплитуды дальнодействующих корреляций сначала малы, а затем по мере удаления от равновесного состояния нарастают и в точках бифуркаций могут обращаться в бесконечность.
Мы считаем, что такой тип поведения представляет особый интерес, поскольку позволяет подвести «молекулярную основу» под обсуждавшуюся ранее при рассмотрении химических часов проблему связи между частицами. Дальнодействующие корреляции организуют систему еще до того, как происходит макроскопическая бифуркация. Мы снова возвращаемся к одной из главных идей нашей книги: к неравновесности как источнику порядка. В данном случае ситуация особенно ясна. В равновесном состоянии молекулы ведут себя независимо: каждая из них игнорирует остальные. Такие независимые частицы можно было бы назвать гипнонами («сомнамбулами»). Каждая из них может быть сколь угодно сложной, но при этом «не замечать» присутствия остальных молекул. Переход в неравновесное состояние пробуждает гипноны и устанавливает когерентность, совершенно чуждую их поведению в равновесных условиях. Аналогичную картину рисует и микроскопическая теория неравновесных процессов, с которой мы познакомимся в гл.9.
Активность материи связана с неравновесными условиями, порождаемыми самой материей. Так же как и в макроскопическом поведении, законы флуктуации и корреляций в равновесных условиях (когда мы обнаруживаем распределение Пуассона) носят универсальный характер. При переходе границы, отделяющей равновесную область от неравновесной, они утрачивают универсальность и обретают сильнейшую зависимость от типа нелинейности системы.