4. Структурная устойчивость
.4. Структурная устойчивость
В каких случаях мы начинаем говорить об эволюции в ее собственном смысле? Как известно, диссипативные структуры требуют сильно неравновесных условий. Тем не менее уравнения реакций с диффузией содержат параметры, допускающие сдвиг в слабо неравновесную область. На бифуркационной диаграмме система может эволюционировать и приближаясь к равновесию, и удаляясь от него, подобно тому как жидкость может переходить от ламинарного течения к турбулентному и возвращаться к ламинарному. Сколько-нибудь жесткой и определенной схемы эволюции не существует.
С совершенно иной ситуацией мы встречаемся в моделях, в которых размеры системы входят в качестве параметра бифуркации: рост, происходящий необратимо во времени, приводит к необратимой эволюции. Однако такой тип развития является достаточно узким частным случаем, хотя вполне возможно, что он имеет некоторое отношение к морфогенетическому развитию.
Ни в биологической, ни в экологической или социальной эволюции мы не можем считать заданным определенное множество взаимодействующих единиц или определенное множество преобразований этих единиц. Это означает, что определение системы необходимо модифицировать в ходе эволюции. Простейший из примеров такого рода эволюции связан с понятием структурной устойчивости. Речь идет о реакции заданной системы на введение новых единиц, способных размножаться и вовлекать во взаимодействие различные процессы, протекающие в системе.
Проблема устойчивости системы относительно изменений такого типа сводится к следующему. Вводимые в небольшом количестве в систему новые составляющие приводят к возникновению новой сети реакций между ее компонентами. Новая сеть реакций начинает конкурировать со старым способом функционирования системы. Если система структурно устойчива относительно вторжения новых единиц, то новый режим функционирования не устанавливается, а сами новые единицы («инноваторы») погибают. Но если структурные флуктуации успешно «приживаются» (например, если новые единицы размножаются достаточно быстро и успевают «захватить» систему до того, как погибнут), то вся система перестраивается на новый режим функционирования: ее активность подчиняется новому «синтаксису».
Простейшим примером такого рода может служить популяция макромолекул, образующихся в результате-полимеризации внутри системы, в которую поступают мономеры А и В. Предположим, что процесс полимеризации автокаталитический, т. е. синтезированный полимер используется в качестве образца для образования цепи с той же последовательностью структурных единиц. Такого рода синтез протекает гораздо быстрее, чем синтез в отсутствие образца для копирования. Каждый тип полимеров, отличающийся от других последовательностью расположения в цепи молекул А и В, может быть описан набором параметров, задающих скорость катализируемого синтеза копии, точность процесса копирования и среднее время жизни самой макромолекулы. Можно показать, что при определенных условиях в популяции доминирует полимер какого-то одного типа, например АВАВАВА..., а остальные полимеры могут рассматриваться как «флуктуации» относительно него. Возникающая всякий раз проблема структурной устойчивости обусловлена тем, что в результате «ошибки» при' копировании эталонного образца в системе возникает полимер нового типа, характеризуемый ранее не встречавшейся последовательностью мономеров А и В и новым набором параметров, который начинает размножаться, конкурируя с доминантными видам и за обладание мономерами А и В. Перед нами простейший вариант классической дарвиновской идеи о «выживании
наиболее приспособленного».
Аналогичные идеи положены в основу модели предбиотической эволюции, разработанной Эйгеном и его сотрудниками. Подробности теории Эйгена можно найти в многочисленных статьях и книжных публикациях, поэтому мы ограничимся лишь изложением самой сути. Эйген и его сотрудники показали, что только система
одного типа обладает способностью сопротивляться «ошибкам», постоянно совершаемым автокаталитическими популяциями, — а именно полимерная система, структурно устойчивая относительно появления любого полимера-«мутанта». Такая система состоит из двух множеств полимерных молекул. Молекулы первого множества выполняют функцию «нуклеиновых кислот». Каждая молекула обладает способностью к самовоспроизведению и действует как катализатор при синтезе молекул второго множества, выполняющих функцию
«протеинов». Каждая молекула второго множества катализирует самовоспроизведение молекул первого множества. Такая кросс-каталитическая связь между молекулами двух множеств может превращаться в цикл (каждая «нуклеиновая кислота» воспроизводит себя с помощью «протеина»). Этот цикл обеспечивает устойчивое выживание «нуклеиновых кислот» и «протеинов», защищенных от постоянно возникающих с высоким коэффициентом воспроизводства новых полимеров: ничто не может вмешиваться в самовоспроизводящийся цикл, образуемый «нуклеиновыми кислотами» и «протеинами». Таким образом, эволюция нового типа начинает расти на прочном фундаменте, предвосхищающем появление генетического кода.
Подход, предложенный Эйгеном, несомненно, представляет большой интерес. В среде с ограниченным запасом питательных веществ дарвиновский отбор имеет важное значение для точного самовоспроизведения. Но нам хотелось бы думать, что это не единственный аспект предбиотической эволюции. Не менее важное значение имеют сильно неравновесные условия, связанные с критическими, пороговыми значениями потоков энергии и вещества. По-видимому, разумно предположить, что некоторые из первых стадий эволюции к жизни были связаны с возникновением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия. На этой стадии жизнь, или «преджизнь», была редким
событием и дарвиновский отбор не играл такой существенной роли, как на более поздних стадиях.
В нашей книге отношению между микроскопическим и макроскопическим уделяется немало внимания. Одной из наиболее важных проблем в эволюционной теории является возникающая в итоге обратная связь между макроскопическими структурами и микроскопическими событиями: макроскопические структуры, возникая из микроскопических событий, должны были бы в свою очередь приводить к изменениям в микроскопических механизмах. Как ни странно, но в настоящее время наиболее понятные случаи относятся к ситуациям, возникающим в человеческом обществе. Когда мы прокладываем дорогу или строим мост, мы можем предсказать, как это скажется на поведении окрестного населения, а оно в свою очередь определяет изменения в характере и способах связи внутри региона. Такие взаимосвязанные процессы порождают очень сложные ситуации, и это обстоятельство необходимо сознавать, приступая к их моделированию. Именно поэтому мы ограничимся описанием лишь четырех наиболее простых случаев.