5. Временная эволюция квантовых систем
.5. Временная эволюция квантовых систем
Перейдем теперь к рассмотрению временной эволюции квантовых систем. В квантовой механике, как и в классической, основную роль играет гамильтониан. Как мы уже знаем, в квантовой механике гамильтониан-функция заменяется гамильтониан-оператором Hоп. Этот оператор энергии выполняет весьма важную миссию: с одной стороны, его собственные значения соответствуют энергетическим уровням, с другой стороны, как и в классической механике, гамильтониан определяет временную эволюцию системы. В квантовой механике аналогом канонических уравнений классической механики является уравнение Шредингера, которое описывает временную эволюцию функции ψ, задающей квантовое состояние системы как результат действия на волновую функцию ψ гамильтониана Hоп (существуют и другие формулировки квантовой механики, но мы не будем приводить их здесь). Термин волновая функция выбран для того, чтобы еще раз подчеркнуть столь важный для всей квантовой физики дуализм волна — частица. Напомним, что ψ — амплитуда волны, эволюционирующей в соответствии с зависящим от типа частицы уравнением, задаваемым гамильтонианом. Как и канонические уравнения классической физики, уравнение Шредингера описывает обратимую и детерминистическую эволюцию. Обратимое изменение волновой функции в квантовой механике соответствует обратимому движению вдоль траектории. Если волновая функция в данный момент времени известна, то уравнение Шредингера позволяет вычислить значение, принимаемое ею в любой другой момент времени как в прошлом, так и в будущем. С этой точки зрения ситуация в квантовой механике вполне аналогична ситуации в классической механике. Столь тесная аналогия объясняется тем, что время не входит в соотношения неопределенности в квантовой механике. Время в квантовой механике — число, а не оператор, тогда как в соотношения неопределенности Гейзенберга могут входить только операторы.
Квантовая механика использует лишь половину переменных классической механики, поэтому классический детерминизм становится неприменимым, и в квантовой физике центральное место занимают статистические соображения. В соприкосновение с ними мы вступаем через интенсивность волны | ψ | (квадрат амплитуды).
Стандартная статистическая интерпретация квантовой механики сводится к следующему. Рассмотрим собственные функции какого-нибудь оператора (например, оператора энергии Hоп) и соответствующие им собственные значения. В общем случае волновая функция ψ не является собственной функцией оператора энергии, но представима в вмде суперпозиции собственных функций. Вес («важность»), с которым каждая собственная функция входит в эту суперпозицию, позволяет вычислять вероятность появления соответствующего собственного значения.
Здесь мы снова сталкиваемся с весьма важным отклонением от классической теории: предсказуемы только вероятности, а не отдельные события. Второй раз за историю физики вероятности были привлечены для объяснения некоторых фундаментальных свойств природы. Впервые вероятности использовал Больцман в своей интерпретации энтропии. Однако предложенная Больцманом интерпретация отнюдь не исключала субъективную точку зрения, согласно которой «только» ограниченность наших знаний перед лицом сложности системы служит препятствием на пути к полному описанию. (Как мы увидим в дальнейшем, это заблуждение ныне вполне преодолимо.) Как и во времена Больцмана, использование вероятностей в квантовой механике оказалось неприемлемым для многих физиков (в том числе и для Эйнштейна), стремившихся к «полному» детерминистическому описанию. Как и в случае необратимости, ссылка на неполноту и ограниченность нашего знания, казалось, позволяла найти выход из создавшегося затруднения: ответственность за статистический характер квантовомеханического описания так же, как некогда за необратимость, возлагалась на нашу неспособность охватить все детали поведения сложной системы.
И здесь мы снова подошли к проблеме скрытых переменных. Однако, как уже говорилось, из-за отсутствия сколько-нибудь убедительного экспериментального подтверждения от идеи введения скрытых переменных пришлось отказаться. Фундаментальная роль вероятностей в квантовой механике постепенно получила всеобщее признание.
Существует лишь один случай, когда уравнение Шредингера приводит к детерминистическому предсказанию: так бывает, когда волновая функция ψ, представимая, вообще говоря, в виде суперпозиции собственных функций, сводится к одной-единственной функции. В частности, при идеальном процессе измерения система может быть приготовлена таким образом, чтобы результат данного измерения был предсказуем. Тогда систему будет описывать единственная собственная функция и поведение системы станет достоверно предсказуемым: она будет находиться в собственном состоянии, соответствующем результату измерения.
Процесс измерения в квантовой механике имеет особое значение, и поныне вызывающее значительный интерес. Предположим, что мы начали с волновой функции, которая является в действительности суперпозицией собственных функций. В результате процесса измерения этот единственный набор систем, представимых одной и той же волновой функцией, заменяется набором волновых функций, соответствующих различным собственным значениям, которые могут быть измерены. На языке квантовой механики это означает, что измерение переводит одну волновую функцию («чистое» состояние) в смесь («смешанное» состояние).
Бор и Розенфельд неоднократно отмечали, что каждое измерение содержит элемент необратимости, т. о. апеллировали к необратимым явлениям (таким, как химические процессы), соответствующим записи, или регистрации, данных. Запись сопровождается усилением, в результате которого микроскопическое явление производит эффект на макроскопическом уровне, т. е. на том самом уровне, на котором мы считываем показания измерительных приборов. Таким образом, измерение предполагает необратимость.
В определенном смысле это утверждение было справедливо и в классической физике. Но проблема необратимого характера измерения в квантовой механике приобрела большую остроту, поскольку затрагивает вопросы на уровне формулировки квантовой механики.
Обычный подход к этой проблеме сводится к утверждению о том, что у квантовой механики нет иного выбора, как постулировать сосуществование двух первичных и не сводимых друг к другу процессов: обратимой и непрерывной эволюции, описываемой уравнением Шредингера, и необратимой и дискретной редукции волновой функции к одной из входящих в нее собственных функций в момент измерения. Возникает парадокс: обратимое уравнение Шредингера может быть проверено лишь с помощью необратимых измерений, которые это уравнение, по определению, не может описывать. Следовательно, квантовая механика не может быть замкнутой теорией.
Столкнувшись со столь большими трудностями, некоторые физики в очередной раз попытались искать убежище в субъективизме, утверждая, что мы сами (наше измерение и даже, по мнению некоторых, наш разум) определяем эволюцию системы, нарушающую естественную «объективную» обратимость. Другие физики пришли к выводу, что уравнение Шредингера «не полно» и в него необходимо ввести новые члены, которые бы учитывали необратимость измерения. Предлагались и менее правдоподобные решения проблемы, такие, как гипотеза многих миров Эверетта (см. книгу д'Эспаньи, указанную в прим. 8). Однако для нас сосуществование в квантовой механике обратимости и необратимости свидетельствует о том, что классическая идеализация, описывающая мир как замкнутую систему, на микроскопическом уровне невозможна. Именно это имел в виду Бор, когда заметил, что язык, используемый нами для описания квантовой системы, неотделим от макроскопических понятий, описывающих функционирование наших измерительных приборов. Уравнение Шредингера описывает не какой-то особый уровень реальности. В его основе лежит скорее предположение о существовании макроскопического мира, которому принадлежим мы сами.
Таким образом, проблема измерения в квантовой механике является аспектом одной из проблем, которым посвящена наша книга, — взаимосвязи между простым миром, описываемым гамильтоновыми траекториями и уравнением Шредингера, и сложным макроскопическим миром необратимых процессов.
В гл. 9 мы увидим, что необратимость входит в классическую физику, когда идеализация, в основе которой заложено понятие траектории, становится неадекватной. Проблема измерения в квантовой механике допускает решение того же типа. Действительно, волновая функция представляет максимум того, что нам известно о квантовой системе. Как в классической физике, объект этого максимального знания удовлетворяет обратимому эволюционному уравнению. В обоих случаях необратимость возникает, когда идеальный объект, соответствующий максимальному знанию, подлежит замене менее идеализированными понятиями. Но когда это происходит? Наступление такого момента зависит от физических механизмов необратимости, к которым мы еще вернемся в гл. 9. Но предварительно нам необходимо резюмировать некоторые другие особенности возрождения современной науки.