5. От случайности к необратимости
.5. От случайности к необратимости
Рассмотрим последовательность квадратов, на которые действует «преобразование пекаря». Эта последовательность изображена на рис. 39. Представим себе, что заштрихованные области заполнены чернилами, а незаштрихованные — водой. При t=0 мы имеем так называемое производящее разбиение квадрата. Приняв его за исходное, мы построим серию разбиений либо на горизонтальные полосы, если отправимся в будущее, либо на вертикальные полосы, если начнем двигаться в прошлое. В обоих случаях мы получим базисные разбиения. Произвольное распределение чернил по квадрату формально представимо в виде суперпозиции базисных разбиений. Каждому базисному распределению можно поставить в соответствие внутреннее время, равное просто числу «преобразований пекаря», которые необходимо проделать, чтобы перейти от про-
Рис. 39. Начав с «производящего разбиения» (см. текст) в момент времени 0 и многократно повторив «преобразование пекаря», мы получили горизонтальные полосы. Двигаясь в прошлое, мы получили бы вертикальные полосы.
изводящего распределения к данному. Следовательно, системы такого типа допускают своего рода внутренний возраст
Внутреннее время Т сильно отличается от обычного механического времени, поскольку зависит от глобальной топологии системы. Можно даже говорить об «овременивании» пространства, тем самым вплотную приближаясь к идеям, недавно выдвинутым географами, которые ввели понятие хроногеографии. Взглянув на «структуру города или ландшафта, мы видим временные элементы как взаимосвязанные и сосуществующие. Бразилиа или Помпеи вполне соответствовали бы определенному внутреннему возрасту, в какой-то мере аналогичному одному из базисных разбиений в «преобразовании пекаря». Наоборот, современный Рим с его зданиями, построенными в самые различные периоды, соответствовал бы среднему времени точно так же, как произвольное разбиение разложимо на элементы,
отвечающие различным внутренним временам.
Посмотрим еще раз на рис. 39. Что произойдет, если мы продвинемся далеко в будущее? Зазоры между горизонтальными чернильными полосами будут становиться все уже и уже. Какова бы ни была точность наших измерений, спустя некоторое время она будет превзойдена, и мы заключим, что чернила равномерно распределены по всему объему. Неудивительно поэтому, что такого рода приближение к «равновесию» можно описать с помощью стохастических процессов типа цепей Маркова, о которых мы упоминали в гл. 8. Недавно это утверждение было доказано со всей математической строгостью, но сам по себе результат представляется вполне естественным. Со временем чернила равномерно распределяются по объему так же, как шары в модели Эренфестов равномерно распределялись по урнам (см. гл. 8). Но если мы заглянем в прошлое, снова начав с производящего разбиения при t=0, то увидим то же самое явление. Чернила будут распределяться вертикальными полосами, и снова, углубившись в прошлое достаточно далеко, мы обнаружим равномерное распределение чернил по объему. Это позволяет нам сделать вывод о том, что и этот процесс допускает описание с помощью цепи Маркова, но направленной в прошлое. Таким образом, из неустойчивых динамических процессов мы получаем две цепи Маркова: одну, стремящуюся к равновесию в будущем, другую — в прошлом. Мы считаем, что этот результат весьма интересен, и хотели бы его прокомментировать. Внутреннее время дает нам новое, «нелокальное» описание.
Хотя «возраст» системы (т. е. соответствующее разбиение) нам известен, мы тем не менее не можем сопоставить ему однозначно определенную локальную траекторию. Мы знаем лишь, что система находится где-то в заштрихованной части квадрата (см. рис. 39). Аналогичным образом, если известны точные начальные условия, соответствующие какой-то точке системы, то мы не знаем ни разбиения, которому она принадлежит, ни возраста системы. Следовательно, для таких систем существуют два взаимодополнительных описания. Ситуация здесь несколько напоминает ту, с которой мы уже встречались в гл. 7 при рассмотрении квантовой механики.
Существование новой альтернативы — нелокального описания — открывает перед нами путь к переходу от динамики к вероятностям. Системы, для которых такой переход возможен, мы называем внутренне случайными системами.
В классических детерминистических системах мы можем говорить о вероятностях перехода из одной точки в другую лишь в весьма вырожденном смысле: вероятность перехода равна единице, если две точки лежат на одной динамической траектории, и нулю, если они не лежат на одной траектории.
В настоящей вероятностной теории нам понадобятся вероятности, принимающие, к отличие от вероятностей типа «нуль—единица», любые значения от пуля до единицы. Как такое возможно? Здесь перед нами во весь рост встает конфликт между субъективистскими взглядами на вероятность и ее объективными интерпретациями. Субъективная интерпретация соответствует случаю, когда отдельные траектории неизвестны. Вероятность (и в конечном счете связанная с ней необратимость) при таком подходе имеет своим истоком наше незнание. К счастью, существует другая, объективная интерпретация: вероятность возникает в результате альтернативного описания динамики, нелокального описания, возможного лишь для сильно неустойчивых динамических систем.
При таком подходе вероятность становится объективным свойством, порождаемым, так сказать, внутри динамики и отражающим фундаментальную структуру динамической системы. Мы уже подчеркивали важность основного открытия Больцмана — установления связи между энтропией и вероятностью. Для внутренне случайных систем понятие вероятности обретает динамический смысл. Теперь нам необходимо совершить переход от внутренне случайных систем к необратимым системам. Как мы уже знаем, неустойчивые динамические процессы порождают по две цепи Маркова.
Взглянем на эту двойственность с другой точки зрения. Рассмотрим распределение, сосредоточенное не на всей поверхности квадрата, а на отрезке прямой. Отрезок может быть вертикальным или горизонтальным. Выясним, что произойдет с этим отрезком под действием «преобразований пекаря», обращенных в будущее. Результат их показан на рис. 40: вертикальный отрезок рассекается на части и в далеком будущем стягивается в точку. Наоборот, горизонтальный отрезок при каждом «преобразовании пекаря» удваивается, и в далеком будущем его образы («копии») равномерно покроют весь квадрат. Ясно, что при движении вспять
Рис. 40. Сжатие и растяжение слоев при «преобразовании пекаря». Со временем сжимающийся слой А1 сокращается (последовательные этапы сокращения обозначены А1, В1, C1). Растягивающиеся слои удваиваются (последовательные этапы удвоения обозначены А2, В2, С2).
во времени (в прошлое) наблюдается обратная картина. По очевидным причинам вертикальный отрезок называется сжимающимся, а горизонтальный — растягивающимся слоем.
Мы видим, что аналогия с теорией бифуркаций полная. Сжимающийся слой и растягивающийся слой соответствуют двум реализациям динамики, каждая из которых связана с нарушением симметрии и появлением несимметричных режимов парами. Сжимающийся слой отвечает равновесному состоянию в далеком будущем, растягивающийся — в далеком прошлом. Мы получаем, таким образом, две цепи Маркова с противоположной ориентацией во времени.
Теперь нам необходимо совершить переход от внутренне случайных систем к системам внутренне необратимым. Для этого нам необходимо понять, чем, собственно, отличается сжимающийся слой от растягивающегося. Нам известна еще одна система, столь же неустойчивая, как и «преобразование пекаря», — система, описывающая рассеяние твердых шаров. Для этой системы растягивающиеся и сжимающиеся слои имеют простой физический смысл. Сжимающийся слой соответствует множеству твердых шаров, скорости которых случайным образом распределены в далеком прошлом и становятся параллельными в далеком будущем. Растягивающийся слой соответствует обратной ситуации: скорости сначала параллельны, а затем их распределение становится случайным. Различие между сжимающимися и растягивающимися слоями очень напоминает различие между расходящимися и сходящимися волнами в примере Поппера. Исключение сжимающихся слоев соответствует экспериментально установленному факту: как бы ни изощрял свое хитроумие экспериментатор, ему никогда не удастся добиться, чтобы скорости в системе оставались параллельными после произвольного числа столкновений. Исключая сжимающиеся слои, мы оставляем тем самым лишь одну из двух введенных нами цепей Маркова. Иначе говоря, второе начало становится принципом отбора начальных условий. Оно допускает лишь такие начальные условия, при которых система эволюционирует к равновесному состоянию в будущем.
Правильность такого принципа отбора подтверждается динамикой. Нетрудно видеть, что в примере с «преобразованием пекаря» сжимающийся слой навсегда остается сжимающимся, а растягивающийся — растягивающимся. Подавляя одну из двух цепей Маркова, мы переходим от внутренне случайной к внутренне необратимой системе. В описании необратимости мы выделяем три основных элемента:
неустойчивость
внутренняя случайность
внутренняя необратимость
Самым сильным из них является внутренняя необратимость: случайность и неустойчивость следуют из него.
Каким образом подобный вывод можно совместить с динамикой? Как известно, в динамике «информация» сохраняется, в то время как цепи Маркова, забывая предысторию, утрачивают информацию (вследствие чего энтропия возрастает; см. гл. 8). Никакого противоречия здесь нет: когда от динамического описания «преобразования пекаря» мы переходим к термодинамическому описанию, нам приходится изменять функцию распределения. Связано это с тем, что «объекты», в терминах которых энтропия возрастает, отличаются от объектов, рассматриваемых в динамике. Новая функция распределения r соответствует внутренне ориентированному во времени описанию динамической системы. Мы не можем останавливаться на математических аспектах перехода от старой функции распределения к новой. Скажем лишь, что преобразование, переводящее одну функцию распределения в другую, должно быть неканоническим (см. гл. 2). Следовательно, прийти к термодинамическому описанию мы можем лишь ценой отказа от обычных понятий динамики.
Примечательно, что такое преобразование существует, в результате чего оказывается возможным объединить динамику и термодинамику, физику бытия и физику становления. Позднее в этой главе и в заключительном разделе книги мы еще вернемся к новым термодинамическим объектам. Подчеркнем лишь, что в состоянии равновесия всякий раз, когда энтропия достигает своего максимума, эти объекты должны вести себя случайным образом.
Заслуживает внимания и то, что необратимость возникает, так сказать, из неустойчивости, наделяющей наше описание неустранимыми статистическими особенностями. Действительно, что означала бы стрела времени в детерминистическом мире, в котором и прошлое и будущее содержатся в настоящем? Стрела времени ассоциируется с переходом из настоящего в будущее именно потому, что будущее не содержится в настоящем и мы совершаем переход из настоящего в будущее. Построение необратимости на основе случайности чревато многими последствиями, выходящими за рамки собственно естествознания. Этих последствий мы коснемся в заключительном разделе нашей книги, а теперь кратко поясним, в чем заключается различие между состояниями, разрешенными вторым началом, и состояниями, которые второе начало запрещает.