7. Динамика корреляций
.7. Динамика корреляций
В гл. 8 мы кратко обсудили эксперимент с обращением скоростей. Возьмем разреженный газ и проследим за его эволюцией во времени. При t=t0 обратим скорости всех молекул газа. Газ вернется в начальное состоя
Рис. 42. Рассеяние частиц. Первоначально скорости всех частиц равны. После соударения равенство скоростей нарушается и рассеянные частицы коррелированы с рассеятелем (корреляции здесь и далее изображены волнистыми линиями).
ние. Мы уже обращали внимание на то, что для воспроизведения своего прошлого газу необходимо некое хранилище информации — своего рода «память». Такой памятью являются корреляции между частицами.
Рассмотрим сначала облако частиц, движущихся к мишени (тяжелой неподвижной частице). Схематически ситуация изображена на рис. 42. В далеком прошлом корреляций между частицами не было. Рассеяние приводит к двум эффектам (см. гл. 8): оно «разбрасывает» частицы (делает распределение скоростей более симметричным) и, кроме того, порождает корреляции между рассеянными частицами и рассеивателем. Корреляции станут заметными, если обратить скорости (например, с помощью сферического зеркала). Эта ситуация изображена на рис. 43 (волнистыми линиями условно показаны корреляции). Таким образом, роль рассеяния сводится к следующему. При прямом рассеянии распределение скоростей становится более симметричным и возникают корреляции между частицами. При обратном рассеянии распределение скоростей становится менее симметричным, а корреляции исчезают. Таким образом, учет корреляций приводит к основному различию между прямым и обратным рассеянием.
Аналогичные рассуждения применимы и к системе многих тел. Здесь также возможны ситуации двух ти-
Рис. 43. Влияние обращения скоростей после соударения: после нового «обращенного» соударения корреляции подавлены и скорости всех частиц равны.
пов. В одном случае (прямой процесс) некоррелированные частицы налетают, рассеиваются и порождают коррелированные частицы (рис. 44). В другом случае (обратный процесс) коррелированные частицы налетают, корреляции при столкновениях нарушаются и после-столкновении частицы уже не коррелированы (рис. 45).
Прямой и обратный процессы отличаются последовательностью столкновений и корреляций во времени. В первом случае имеют место корреляции послестолкновительиыс («постстолкновительные»). Имея в виду различие между пред- и послестолкновительными корреляциями, вернемся к эксперименту с обращением скоростей. Начнем при t=0 — с начального состояния, соответствующего корреляциям между частицами. В интервале времени от t=0 до t=t0 система эволюционирует «нормально»: в результате столкновений распределение скоростей приближается к распределению Максвелла. Кроме того, столкновения порождают послестолкновительные корреляции между частицами. При t=t0 происходит обращение скоростей и возникает качественно новая ситуация. Послестолкновительные корреляции становятся предстолкновительными. В интервале времени от t=t0 до t=2t0 эти предстолкновительные корреляции исчезают, распределение скоростей становится менее симметричным, и к моменту времени t=2t0 полностью
восстанавливается некоррелированное состояние. Таким образом, история системы делится на два этапа. На первом этапе столкновения трансформируются в корре-
Рис. 44. Возникновение корреляций после соударения (корреляции условно изображены волнистыми линиями).
Рис. 45. Разрушение предстолкновительных корреляций (волнистые линии) при столкновениях.
ляции, на втором этапе происходит обратное превращение корреляций в столкновения. Оба типа процессов — прямой и обратный — не противоречат законам динамики. Кроме того, как мы уже упоминали в гл. 8, полная «информация», описываемая динамикой, остается постоянной. Мы видели также, что в больцмановском описании эволюция от t=0 до t=t0 соответствует обычному убыванию H-функции, а в интервале от t=t0 до t=2t0 эволюция протекала бы аномально: H-функция возрастала бы, а энтропия убывала. Но это означало бы, что можно придумать эксперименты, как лабораторные, так и численные, в которых нарушалось бы второе начало! Необратимость на интервале [0, t0] компенсировалась бы «антинеобратимостью» на интервале [t0, 2t0 ].
Такое положение нельзя признать удовлетворительным. Все трудности устраняются, если перейти к новому «термодинамическому представлению», в рамках которого динамика, как в «преобразовании пекаря», становится вероятностным процессом, аналогичным цепи Маркова. Следует также учесть, что обращение — процесс не
Рис. 46. Временная эволюция H-функции в эксперименте с обращением скоростей. В момент времени t0 происходит обращение скоростей — H-функция претерпевает разрыв. В момент времени 2t0 система находится в таком же состоянии, как в момент времени 0, — H-функцця возвращается к своему начальному значению. При всех t, за исключением t=t0, H-функция убывает. Важно подчеркнуть, что при t=t0, H-функция принимает два различных значения.
«естественный». Для обращения скоростей к молекулам извне должна поступить «информация». Для того чтобы обратить скорости, необходимо существо, аналогичное демону Максвелла, а за демона Максвелла приходится «платить». Изобразим зависимость H-функции от времени (для какого-нибудь вероятностного процесса). Типичный график такой зависимости представлен на рис. 46. При нашем подходе (в отличие от больцмановского) эффект корреляций при переопределении H-функции сохраняется. Следовательно, в точке обращения скоростей t0 функция H должна претерпевать скачок, поскольку мы внезапно создаем в этой точке аномальные предстолкновительные корреляции, которые должны нарушиться позднее. Скачок H-функции соответствует энтропии, или информационной цене, которую нам приходится платить.
Итак, мы получаем адекватное представление второго начала: в любой момент времени H-функция убывает (энтропия возрастает). Единственным исключением является точка t0: H-функция претерпевает в ней скачок в тот самый момент, когда система открыта. Лишь воздействуя на систему извне, можно «обратить» скорости.
Нельзя не отметить еще одно важное обстоятельство: при t=t0 новая H-функция принимает два различных значения, одно — для системы до обращения скоростей, другое — для системы после обращения скоростей. Энтропия системы до обращения и после обращения скоростей различна. Это напоминает ситуацию, происходящую при «преобразовании пекаря», когда сжимающийся и растягивающийся слои — скорости, переходящие друг в друга при обращении.
Предположим, что, прежде чем производить обращение скоростей, мы достаточно долго выжидаем. В этом случае послестолкновительные корреляции имели бы произвольный радиус и энтропийная цена за обращение скоростей была бы непомерно велика. А поскольку обращение скоростей стало бы нам «не по карману», его исключили бы. На физическом языке это означает, что второе начало запрещает устойчивые предстолкновительные корреляции на больших расстояниях.
Поразительна аналогия с макроскопическим описанием второго начала. Тепло и механическая энергия эквивалентны с точки зрения сохранения энергии (см. гл. 4 и 5), но отнюдь не второго начала. Кратко говоря, механическая энергия более «высокого сорта» (более когерентна), чем тепло, и всегда может быть превращена в тепло. Обратное неверно. Аналогичное различие существует на микроскопическом уровне между столкновениями и корреляциями. С точки зрения динамики столкновения и корреляции эквивалентны. Столкновения порождают корреляции, а корреляции могут разрушать последствия столкновений. Но между столкновениями и корреляциями имеется существенное различие. Мы можем управлять столкновениями и порождать корреляции, но мы не в состоянии так управлять корреляциями, чтобы уничтожить последствия, вызванные столкновениями в системе. Этого существенного различия недостает в динамике, но его можно учесть в термодинамике. Следует заметить, что термодинамика нигде не вступает в конфликт с динамикой. Термодинамика вносит важный дополнительный элемент в наше понимание физического мира.