3. Энтропийный барьер
.3. Энтропийный барьер
В гл. 9 мы описали второе начало как принцип отбора: каждому начальному условию соответствует некоторая «информация». Допустимыми считаются все начальные условия, для которых эта информация конечна. Но для обращения времени необходима бесконечная информация; мы не можем создавать ситуации, которые переносили бы нас в прошлое! Чтобы предотвратить путешествия в прошлое, мы возвели энтропийный барьер.
Нельзя не отметить интересную аналогию между энтропийным барьером и представлением о скорости света как о максимальной скорости передачи сигналов. Существование предельной скорости распространения сигналов — один из основных постулатов теории относительности Эйнштейна (см. гл. 7). Такой барьер необходим для придания смысла причинности. Предположим, что мы покинули бы Землю на фантастическом космическом корабле, способном развивать сверхсветовую скорость. Тогда мы смогли бы обгонять световые сигналы и тем самым переноситься в свое собственное прошлое. Энтропийный барьер также необходим для того, чтобы придать смысл передаче сигналов. Мы уже упоминали о том, что необратимость и передача сигналов тесно связаны между собой. Норберт Винер убедительно показал, к каким ужасным последствиям привело бы существование двух направлений времени. Следующий отрывок из знаменитой «Кибернетики» Винера заслуживает того, чтобы привести его:
«Очень интересный мысленный опыт — вообразить разумное существо, время которого течет в обратном направлении по отношению к нашему времени. Для такого существа никакая связь с нами не была бы возможна. Сигнал, который оно послало бы нам, дошел бы к нам в логическом потоке следствий — с его точки зрения — и причин — с нашей точки зрения. Эти причины уже содержались в нашем опыте и служили бы естественным объяснением его сигналов без предположения о том, что разумное существо послало сигнал. Если бы оно нарисовало нам квадрат, остатки квадрата представились бы предвестником последнего и квадрат казался бы любопытной кристаллизацией этих остатков, всегда вполне объяснимой. Его значение казалось бы столь же случайным, как те лица, которые представляются при созерцании гор и утесов. Рисование квадрата показалось бы катастрофической гибелью квадрата — внезапной, но объяснимой естественными законами. У этого существа были бы такие же представления о нас. Мы можем, сообщаться только с мирами, имеющими такое же направление времени».
Именно энтропийный барьер гарантирует единственность направления времени, невозможность изменить ход времени с одного направления на противоположное.
На страницах нашей книги мы неоднократно обращали внимание на важность доказательства несуществования. Эйнштейн первым осознал важность такого рода доказательства, положив в основу понятия относительной одновременности невозможность передачи информации со скоростью, большей, чем скорость света. Вся теория относительности строится вокруг исключения «ненаблюдаемых» одновременностей. Эйнштейн усматривал в этом шаге аналогию с запретом вечного двигателя в термодинамике. Однако некоторые современники Эйнштейна, например Гейзенберг, указывали на важное различие между несуществованием вечного двигателя и невозможностью передачи сигналов со сверхсветовыми скоростями. В термодинамике речь идет об утверждении, что некоторая ситуация не встречается в природе; в теории относительности утверждается невозможность некоторого наблюдения, т. е. своего рода диалога, коммуникации между природой и тем, кто ее описывает. Воздвигнув квантовую механику на основе запрета всего, что квантовый принцип неопределенности определяет как ненаблюдаемое, Гейзенберг считал себя следующим примеру Эйнштейна, несмотря на скептицизм, с которым Эйнштейн встретил квантовую механику.
До тех пор пока мы считали, что второе начало выражает лишь практическую невероятность того или иного процесса, оно не представляло теоретического интереса. У нас всегда оставалась надежда, что, достаточно поднаторев в технике, нам все же удастся преодолеть запрет, налагаемый вторым началом. Но, как мы видели, этим надеждам не суждено было сбыться. Корень всех «бед» — в отборе допустимых состояний. Лишь после того, как возможные состояния отобраны, вступает в силу вероятностная интерпретация Больцмана. Именно Больцман впервые установил, что возрастание энтропии соответствует возрастанию вероятности, беспорядка. Но интерпретация Больцмана основывается на предпосылке, что энтропия есть принцип отбора, нарушающий временную симметрию. Любая вероятностная интерпретация становится возможной лишь после того, как временная симметрия нарушена.
Несмотря на то что мы многое почерпнули из больцмановской интерпретации энтропии, наша интерпретация второго начала зиждется на совсем другой основе, поскольку мы имеем последовательность второе начало как принцип отбора, приводящий к нарушению симметрии
¯
вероятностная интерпретация
¯
необратимость как усиление беспорядка
Только объединение динамики и термодинамики с помощью введения нового принципа отбора придает второму началу фундаментальное значение эволюционной парадигмы естественных наук. Этот пункт настолько важен, что мы остановимся на нем подробнее.