Струйная гидроабразивная обработка поверхностей

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ОГЛАВЛЕНИЕ

 

 

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ................................................................... .....3

1. СУЩНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ. ….4

2. МЕХАНИЗМ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ….  5

3. ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ……………………………………………………………………………………6

4. СРОК СЛУЖБЫ СУСПЕНЗИИ И РЕГЕНЕРАЦИЯ АБРАЗИВНОГО МАТЕРИАЛА………………………………………………………………………………...  10

5. ПРОИЗВОДИТЕЛЬНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ………………………………………………………………………………  …11

6. КАЧЕСТВО ПОВЕРХНОСТНОГО СЛОЯ ПОСЛЕ СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ……………………………………………………...14

7. СХЕМЫ И КОНСТРУКЦИИ СТРУЙНЫХ АППАРАТОВ……………………..……26

7.1 КЛАССИФИКАЦИЯ И ТРЕБОВАНИЯ К СТРУЙНЫМ АППАРАТАМ……...…26

7.2 КОНСТРУКЦИИ СТРУЙНЫХ АППАРАТОВ………………………………...……..28

7.2.1 СТРУЙНЫЕ АППАРАТЫ,ФОРМИРУЮЩИЕ СТРУИ КРУГЛОГО СЕЧЕНИЯ……………………………………………………………………………………...28

7.2.2 СТРУЙНЫЕ АППАРАТЫ,ФОРМИРУЮЩИЕ ПЛОСКИЕ СТРУИ…………...33

8. ЗАКОН БЕРНУЛЛИ………………………………………………………..………..…….38

9. ВЫВОДЫ…………………………………………………………………....………..……..38

9. СПИСОК ЛИТЕРАТУРЫ…………………………………………………………..…….40

 

 

 

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ

ГАО- гидроабразивная обработка

ГТД- газотурбинный двигатель

1. СУЩНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ

       Обработка поверхностей заготовок точением, фрезерованием, протя­гиванием и шлифованием характеризуется тем, что режущие элементы металлического или абразивного инструмента в течение всего пронесен удаления металла соприкасаются с обрабатываемыми поверхностями. При этом образуется замкнутая технологическая система, включающая станок, приспособление, инструмент и заготовку, Обработка сопровож­дается нагревом и вибрацией всех составляющих этой системы и дефор­мацией металла в зоне действия режущей кромки. Обработка лезвийным инструментом требует значительных затрат энергии для удаления при­пуска металла с обрабатываемой заготовки.

       В авиадвигателестроении необходимость обработки сложных фасон­ных поверхностей привела к созданию новых методов обработки, харак­теризующихся отсутствием непосредственного механического контакта инструмента с заготовкой. В этих методах в роли инструмента высту­пает либо электрическое иоле (электрохимическая размерная обработка, электрополирование), либо направлений ударный поток различных мате­риалов (пескоструйная, дробеструйная обработки, обработка шариками и т. д.) на заготовку.

       Процессы, использующие эффект удара абразивных частиц об об­рабатываемую поверхность заготовки, осуществляются следующими спо­собами:

1) удар производится собственно абразивной частицей (пескоструй­ная обработка);

2) удар производится абразивно-жидкостной струей (струйная гидроабразивная обработка);

3) воздействие на обрабатываемую поверхность взвешенных абразив­ных частиц, распыляемых сжатым воздухом (турбоабразивная об­работка) или магнитным полем  (магнитоабразивная обработка).

       Пескоструйная обработка поверхностей заготовок применяется давно и осуществляется либо с использованием пескоструйного аппарата с пнев­матическим приводом и специальными соплами, либо с помощью песко­мета, бросающего песок вращающимися лопатками. Для пескоструйной обработки используется неочищенный песок любого состава и в редких случаях чистый кварцевый песок определенной зернистости. Значи­тельная запыленность, сопровождающая работу пескоструйных аппа­ратов, ограничила применение данного метода и производстве авиа­ционных двигателей.

       Процесс струйной гидроабразивной обработки (ГАО) заключается в направлении струи суспензии, состоящей из воды и частиц абразивных материалов, на обрабатываемую поверхность заготовки. Эта струя под­вергается воздействию потока сжатого воздуха, который увеличивает скорость истечения суспензии из сопла. В результате такой обработки образуются чистые матовые поверхности, без направленных рисок, ха­рактерных для лезвийной обработки материалом. Действие режущих кромок абразивных частиц на обрабатываемую поверхность непродол­жительно и имеет ударный характер.

       При высокой скорости струи суспензии этот способ имеет только то общее с пескоструйной обработкой, что в обоих случаях работа по удалению металла производится за счет кинетической энергии абразивной частицы.

       Химически активные вещества, добавленные в суспензию, облегчают воздействие абразивных частиц на обрабатываемую поверхность, про­цесс ускоряется и количество удаляемого металла увеличивается.

       Компактность струи суспензии определяет площадь сечения струи при встрече с обрабатываемой поверхностью и при прочих равных условиях является главным фактором, обеспечивающим наибольшее удельное дав­ление струи суспензии на заготовку. Движение струи сопровождается бомбардировкой обрабатываемой поверхности абразивными частицами. Количество ударов абразивных частиц колеблется в зависимости от условий обработки от 2·106 до 25·106 в секунду.

       В отличие от процессов резания, после которых на обработанной поверхности остаются риски и микротрещины, струйная гидроабразив­ная обработка не создаст направленной шероховатости, обеспечивает упрочнение обрабатываемой поверхности, вследствие чего повышается усталостная прочность обработанных деталей.

       Все процессы механической обработки металла сопровождаются раз­витием значительных усилий и выделением в зоне резания больших ко­личеств тепла, вызывающих пластическую деформацию поверхностного слоя. При струйной гидроабразивной обработке температура обраба­тываемых деталей не изменяется. Микронагрев  вызываемый отделением стружки абразивной частицей, устраняется потоком суспензии, сопровож­дающим эту абразивную частицу.

       Струйную гидроабразивную обработку целесообразно применять для обработки сложных поверхностей: помимо значительного снижения вре­мени обработки этот способ позволяет осуществить механизацию про­цесса отделочных операций и улучшить условия труда.

2. МЕХАНИЗМ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ

 

       Струйная гидроабразивная обработка представляет собой процесс ударного воздействия на обрабатываемую поверхность высокоскоростной гидроабразивной струи. Характер взаимодействия абразивных частиц, находящихся в струе, с поверхностью определяет выходные параметры процесса производительность и качество обработки. В плане абразив­ного воздействия струйную гидроабразивную обработку можно рассмат­ривать как процесс эрозии потоком абразивных частиц обрабатываемой поверхности. Для установления физической картины явлений, происходя­щих при изнашивании пластичного материала потоком абразивных частиц, необходимо первоначально рассмотреть износ, вызываемый уда­ром одиночной частицы.

       Удар частицы о поверхность приводит к возникновению кратера. Исследование кратеров, образующихся при ударах частицы под  разными углами атаки, показало, что вытесненный из кратера материал течет в направлении падения частицы с образованием вала до тех нор, пока он не растрескивается из-за значительных быстродействующих накопленных деформаций. При ударах под углом 90° вал располагается вокруг кратера равномерно, при меньших углах атаки вал образуется по бокам кратера и по направлению движения частицы. Характер деформаций и образова­ние вала зависят от формы частицы, ее ориентации при контакте с по­верхностью, скорости частицы, угла ее падения, а также от свойств ма­териалов частицы и поверхности. Было обнаружено существование крити­ческой скорости частицы, выше которой материал обрабатываемой по­верхности вытесняется в вал кратера, а также наличие вокруг кратера, образовавшегося при ударе, зоны высокой плотности дислокаций (обычно толщиной а несколько микрометров).

       При ударе о поверхность угловатой частицы наблюдается процесс микрорезания материала. Микрорезание производится только вершинами абразивных частиц (зерен) и из-за скоротечности и направленности ударного воздействия оно носит очень специфический характер. Резуль­таты такого воздействия зависят от так называемого угла скоса частицы и угла ее падения. При ударах угловатые частицы либо вытесняют больше материала в вал кратера, где он становится уязвимым для дальнейшей эрозии, либо отделяют материал от поверхности (в зависимости от угла скоса частицы при контакте). Удаление материала наблюдается в преде­лах углов скоса от 0 до 17°. Такие условия удара редки и возможны лишь в одном из шести случаев.

       Изнашивание материала одиночной частицей характеризуется дефор­мациями пропахивания и резания. Пропахивание наблюдается при боль­ших отрицательных передних углах резания. При положительных перед­них углах имеет место процесс резания. При рассмотрении эрозии, вызванной одиночными частицами, необходимо учитывать возможность появления термически локализованной деформации (адиабатический сдвиг) как результата локального нагрева. Так, например, титан оказался чувствительным к локальным термическим эффектам, обусловленным вы­делением энергии частицы. В результате от пропаханного металла в районе кратера на поверхности образцов из титана откалываются чаще мелкие осколки, чем в случае стальных образцов.

Механизм эрозии пластичных материалов абразивными частицами ма­лых размеров (rр<100 мкм) имеет специфические особенности. При ударе частиц наблюдаются высокие скорости относительной деформации е, причем е~rр^(-1) Поэтому, например, для частиц размером 5 мкм и при скоростях 100 м/с величина e достигает значений порядка 107 с-1. Реак­ция материала при таких скоростях частиц мало известна. Таким обра­зом, при ударе одиночной частицы о поверхность происходят следую­щие процессы: образование кратера, образование вала в направлении движения частицы, микрорезание под разными углами скоса, термиче­ское разупрочнение материала, высокие скорости относительной дефор­мации.

       Удаление материала при воздействии на обрабатываемую поверх­ность потока абразивных частиц происходит в результате взаимо­действия нескольких одновременно протекающих процессов, обуслов­ленных отдельным или совместным влиянием компонентов потока этих частиц. При рассмотрении эрозии материала струей абразивных частиц необходимо учитывать: соударения частиц между собой внутри набегающего потока; дробление отдельных частиц; экранирование обра­батываемой поверхности отскакивающими от нее частицами; широкий диапазон углов падения частиц в определенный момент времени; влияние обрабатываемой поверхности на траекторию движения абразивных частиц; подповерхностное повреждение материала вследствие многократ­ных ударов абразивными частицами; адсорбционный эффект понижения прочности обрабатываемого материала на границе раздела обрабаты­ваемой поверхности и потока и т. д.

       Тонкости процессов деформации и разрушения материала, протекаю­щих при многократных ударах частиц по обрабатываемой поверхности, все еще. до конца не изучены. На основании отдельных исследований осколков, образовавшихся в результате эрозии пластичных материалов, было сделано предположение, что путем непосредственного срезания материала при ударе о него абразивной частицы перемещается лишь небольшое количество материала. Обширная пластическая деформация вызывается воздействиями пропахивающего типа (образование вала), при этом смещенный материал создаст топографию поверхности, с кото­рой металл может быть удален последующими ударами частиц .

       Наблюдается резкое количественное и качественное различие между процессами эрозии в присутствии жидкости и без нес. При удалении материала абразивной струей происходят следующие процессы: разру­шение обрабатываемой поверхности в результате высоких контактных напряжений; срезание микростружки с поверхности; образование клино­видных трещин в поверхностном слое обрабатываемой поверхности; гидроудар; контактная усталость; выплавление материала вследствие вы­сокой локальной температуры и т. д. Относительная роль каждого из этих явлений определяется физико-механическими свойствами материала обрабатываемой детали и абразивных частиц, скоростью и углом атаки абразивной струи.

       Следует отметить, что до настоящего времени теории струйной гидроабразивной обработки, охватывающей все стороны процесса, еще не существует. Эта теория должна базироваться на основе аэрогидро­динамики двухфазных и трехфазных сред, которая еще недостаточно изучена, а также на исследованиях многократных ударов остроконечной абразивной частицы о пластичный материал, к которому принадлежит большая часть металлов и сплавов, применяемых в авиадвигателестроении.

С точки зрения абразивного воздействия струйная ГАО имеет много общего с процессами эрозии материалов абразивными частицами.

       Впервые рассмотрение процессов эрозии пластичных материалов было выполнено Финни, использовавшим в качестве модели механизм микро­механической обработки. Он показал, что объем металла, удаляемого массой абразивных частиц, которую несет поток воздуха, расширяющийся в сопле данной формы, равен

 

где m, v0- масса абразивной частицы и ее скорость при ударе о поверх­ность м/с; к отношение вертикальной составляющей силы воздействия частицы на обрабатываемую поверхность к горизонтальной составляющей; d - глубина среза мм; σ1— предел пластичности обрабатываемого материала МПа; f(а) — функция, характеризующая влияние угла падения частицы на величину съема металла.

       При малых углах соударения частиц с поверхностью теория хорошо согласуется с экспериментальными данными; при этом отсутствует износ материала при углах соударения, близких к 90º.

       Согласно другой модели процесса эрозии пластичных материалом, полученной на основе теории внедрения и уравнения энергетического баланса, предложенной Шелдоном и Канером

где к - коэффициент; d, ρ- диаметр(мм) и плотность частицы(кг/м3); v0 -скорость удара        частицы м/c; Н — твердость материала но Виккерсу.

       Результаты расчетов, выполненные по этой формуле, отличаются от результатов, полученных но формуле Финни.

       При струйной гидроабразивной обработке наличие жидкой фазы зна­чительно изменяет характер протекания процесса взаимодействии абра­зивных частиц с поверхностью. Струйную ГАО можно рассматривать как эрозионно-коррозионный процесс, причем разрушающее действие жид­кости объясняется проявлением эффекта Ребиндера . Отсутствие информации об основных параметрах ударного воздействия гидро­абразивной струи на обрабатываемую поверхность, большинство из ко­торых взаимосвязаны и их трудно контролировать и измерить, препят­ствует созданию математической модели струйной ГAО. С. П. Козыревым сделана попытка теоретически описать процесс удаления металла под действием гидроабразивной струи. Рассматривая работу абразивной частицы при ее динамическом вдавливании в поверхность под прямым углом и силы гидродинамического сопротивления, он получил формулу для определения весового съема металла

где к — постоянный коэффициент; а — коэффициент, учитывающий межзерновое пространство;γ1 γ2 — удельный вес абразивного материала и металла соответственно; V-объем струи воды, по которому ударяет образец;  — содержание абразивных частиц в воде в процентах к объему; N — число ударов частиц по образцу; v1, k1 -скорость абразив­ной частицы и коэффициент восстановления ее скорости; HM -динами­ческая твердость металла но Моосу.

       Результаты расчетов, выполненных по этой формуле, достаточно хо­рошо совпадают с экспериментальными данными. Однако эта формула не учитывает влияния па массовый съем металла таких параметров, как размеры абразивных частиц, углы атаки частиц, давление воздуха, длина струи и другие.

       А.Е. Проволоцкий предположил, что характер разрушения поверхно­сти гидроабразивной струей напоминает схему резания внедряющимся клином, а процесс удаления может быть описан согласно  сле­дующим дифференциальным уравнением:

откуда

где х — текущий линейный съем металла за время t мм; Q — общий линейный припуск мм; к — коэффициент разрушения металла; β— коэффициент убывания абразивной способности определенного объема суспензии.

       Последнее уравнение, хотя и согласуется с экспериментальными дан­ными, также не учитывает большинства параметров струйной гидро­абразивной обработки.

Рассмотренный выше механизм удаления пластичного материала под воздействием потока абразивных частиц позволяет качественно оценить процесс струйной гидроабразивной обработки деталей и теоретически исследовать его.

3. ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ

 

       При производстве современных авиационных ГТД наиболее сложными в изготовлении, дорогостоящими и трудоемкими являются лопатки компрессора и турбины. Объясняется это тем, что они изготавливаются из труднообрабатываемых материалов, имеют сложную конструктивную форму, малую жесткость, повышенные требования к точности изготов­ления, шероховатости и физико-химическому состоянию поверхностного слоя. Лопатки, как правило, определяют ресурс и надежность работы двигателя. В технологических процессах изготовления и ремонта лопаток ГТД для обеспечения заданных показателей состояния поверхностного слоя профиля пера применяют отделочные операции, которые обычно сводятся к слесарно-полировальным операциям. Сложный профиль пера лопаток затрудняет применение традиционных высокопроизводительных методов обработки, и большинство операций но доводке профиля выпол­няется вручную, что приводит к большой трудоемкости обработки и не обеспечивает стабильности получения заданных параметров поверхност­ного слоя.

       Проблема снижения трудоемкости и повышения качества изготов­ления и ремонта лопаток ГТД является весьма актуальной и может быть решена путем применения высокопроизводительных методов обра­ботки, основанных на воздействии на поверхность свободных абразивных частиц. Одним из таких методов является струйная гидроабразивная обработка. Повышенный интерес к струйной ГАО объясняется широкими технологическими возможностями этого метода при обработке поверхно­стей сложного контура, а также его достоинствами, среди которых можно выделить: возможность обработки любого материала независимо от его физико-химических свойств; простоту регулирования степени воздействия на обрабатываемую поверхность; стабильность процесса обработки; вы­сокое качество поверхностного слоя после обработки (отсутствие прижогов, подповерхностных трещин и т. п.); возможность механизации и автоматизации; относительно малую стоимость оборудования и т. д. Анализ технологических процессов изготовления и ремонта лопаток ГТД показывает, что применение струйной гидроабразивной обработки позво­ляет решить многие проблемы, связанные с обработкой профиля пера и трактовых поверхностей.

       Ремонт лопаток газотурбинных двигателей является сложным и тру­доемким процессом, представляющим собой последовательность техноло­гических операций, направленных на восстановление утраченных в про­цессе эксплуатации первоначальных прочностных свойств лопаток. Ре­монту могут подвергаться и лопатки, не работавшие на двигателе, если в процессе их изготовления обнаружены устранимые дефекты. Допусти­мые нормы износа (дефектов) лопаток, подлежащих ремонту, устанавли­ваются конструкторской документацией на ремонт.

       В общем случае дефекты лопаток турбины и компрессора, устраняе­мые в процессе ремонта, могут быть систематизированы следующим обра­зом: нагар, налет алюминия, графита на трактовых поверхностях пера и бандажных полок; нарушение теплозащитных и антикоррозионных покрытий; дефекты основного материала лопаток в виде потемнения и окисления, а также механические повреждения в виде изъязвлений, забоин, царапин и т. п.

       Области возможного применения струйной ГАО при изготовлении и ремонте лопаток компрессора и турбины авиационных двигателей показа­ны на рис. 1. Кроме обработки лопаток струйная ГАО может успешно применяться при обработке сложных поверхностей таких деталей, как диски турбины и компрессора, зубчатые колеса, крыльчатки и др. Целе­сообразно струйную ГАО применять и для окончательной обработки ка­навок режущих инструментов (сверл, зенкеров и др.), полостей матриц и т. п.

4. СРОК СЛУЖБЫ СУСПЕНЗИИ И РЕГЕНЕРАЦИЯ АБРАЗИВНОГО МАТЕРИАЛА

 

       Абразивные частицы в процессе ударного взаимодействия с обра­батываемой поверхностью изнашиваются, их рабочие грани скругляются, что приводит с течением времени к снижению общей абразивной способности. Хотя разрушение абразивных частиц при струйной ГАО протекает в десятки раз медленнее, чем при пескоструйной обработке, что объясняется демпфирующим действием рабочей жидкости, срок служ­бы суспензии имеет определенные пределы. При непрерывной обработке в зависимости от вида абразивного материала, схемы установки струйной ГАО и конфигурации обрабатываемых деталей срок службы суспен­зии составляет от 40 до 70 часов. Суспензию эксплуатируют до тех нор, пока в отстоявшейся пробе разрушенные абразивные частицы не пре­высят 10 % общего объема суспензии, в противном случае суспензию заменяют.

       Для нормального протекания процесса струйной ГАО суспензия в баке установки должна быть однородной, что обеспечивается постоян­ным барботированием осевших на дно бака абразивных частиц.

       Во избежание возврата в суспензию тех абразивных частиц, кото­рые в результате многократных ударов но обрабатываемой поверх­ности разрушились и изменили свои размеры, в некоторых установках имеются расширители и эксгаустеры. В расширителях струя, отражен­ная от обрабатываемой поверхности, теряет скорость, и раздроблен­ные абразивные частицы вместе с воздухом, насыщенным парами рабочей жидкости, отсасываются в фильтр. Периодически фильтр очи­щают и абразивные частицы сортируют для повторного использовании.

       При струнной ГАО абразивные частицы в суспензии должны быть одинаковыми, чтобы устранять следы предшествующей обра­ботки поверхности и создавать новую однородную микрогеометрию поверхности. Только при особых вилах струйной ГАО суспензию со­ставляют из абразивных частиц разной зернистости. Если раздроблен­ные частицы абразивного материала длительное время не удалять из суспензии, то эффективность струйной ГАО снизится.

       Устройства для сортировки отработавшего абразивного материала применяют лишь в крупных установках для струйной ГАО или в цехах, где работает несколько установок и где применяются дорогие сор­та абразивных материалов.

5. ПРОИЗВОДИТЕЛЬНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ

 

       Одним из основных показателей, характеризующих эффективность любого способа обработки, является его производительность. При струйной ГАО производительность определяется временем, необходи­мым для удаления припуска заданной величины с обрабатываемой поверхности, или временем, в течение которого достигается требуемое состояние поверхностного слоя. Для количественной оценки произ­водительности струйной ГАО служит величина массового съема ма­териала в единицу времени.

       Известно, что на производительность струйной ГАО основное влия­ние оказывают такие параметры, как время обработки, размер абразив­ных частиц, концентрация абразивных частиц в суспензии, давление эжектирующего воздуха, угол атаки частиц, длина струи, марка абра­зивного материала.

       Абразивные частицы при столкновении с обрабатываемой поверх­ностью внедряются в нес и проходят некоторое расстояние, вызывая разрушение материала. В соответствующей литературе при объясне­нии износа поверхностей абразивными частицами в зависимости от физико-механических свойств абразивного и обрабатываемого материа­лов, формы абразивных частиц, отношения глубины их внедрения к радиусу скругления вершин зерен, усилия разрушении и т. п. вы­деляются три вида износа материала :

1) упругое внедрение: в этом случае h/r<0,01 (где h — глубина внедрения мм, r - радиус скругления вершин зерен мм) и разрушение ма­териала происходит в результате фрикционно-контактной усталости, близкой но природе к обычной усталости материалов;

2) полидеформационное разрушение (пластический контакт): h/r= =0,01...0,5;

3) микрорезание (хрупкое и вязкое разрушение): этот вид разру­шения наблюдается при больших углах резания и отношениях h/r >0,5. Так как абразивные частицы имеют неправильную форму и в момент удара могут быть как угодно ориентированы в простран­стве, деформационные процессы, происходящие в зоне контакта, не будут постоянными даже при постоянстве таких параметров, как угол атаки, скорость и масса абразивных частиц.

       Обычно макрорельеф абразивной частицы представляет собой со­вокупность выступов (вершин) и впадин, причем радиус скругления вершин и угол при вершинах зависят от размеров частицы. Иссле­дования отпечатков, оставленных на поверхности частицами, показа­ли, что при малых скоростях движения частиц деформирование ма­териала производится в основном вершинами зерен. С увеличением скорости движения размеры лунок определяются характерным разме­ром (диаметром) частицы.

       Движение частицы по поверхности сопровождается изменением условного переднего угла от 90 (начало внедрения) до 0 (внедре­ние на глубину, равную радиусу), причем этот угол отрицателен. Так как деформирующая часть абразивной частицы является сферической поверхностью, то можно считать, что в момент удара условные перед­ний и задний углы, а также угол резания не будут зависеть от угла наклона оси симметрии частицы относительно поверхности.

       Внедрение абразивной частицы в обрабатываемую поверхность под острым углом сопровождается возникновением крутящего момента вокруг центра тяжести частицы. При этом энергия вращения частицы при ударе составляет менее 1 % энергии ее поступательного движе­нии. Поэтому при расчетах энергии, потерянной частицей при ударе, ее вращением можно пренебречь.

       При внедрении частицы происходит в общем случае упруго-пласти­ческое деформирование обрабатываемой поверхности, причем общая глубина внедрения будет равна сумме упругой и пластической состав­ляющих деформаций. На начальном этапе внедрения происходит упру­гое деформирование. Очаг пластической деформации зарождается при достижении максимальными напряжениями в центре площадки контак­та (согласно теории Герца) критического значения. Расчеты показы­вают, что для большинства металлов и сплавов, применяемых в авиадвигателестроении, величина упругого внедрения на несколько порядков меньше радиуса скругления вершин абразивной частицы. По­этому, пренебрегая упругой деформацией, можно считать, что обра­батываемая поверхность представляет собой пластическое полупро­странство. Для анализа взаимодействия абразивной частицы с по­верхностью примем следующие допущения:

1 ) абразивная частица считается абсолютно жесткой; в момент удара частица не разрушается;

2) частица представляет собой шар с радиусом R;

3) масса обрабатываемой заготовки по сравнению с массой частицы бесконечно велика; волновыми процессами при ударе пренебрегаем;

4) учитываем только скольжение частицы но поверхности; враще­нием и возможным перекатыванием частицы при ударе пренебре­гаем;

5) обрабатываемая поверхность представляет собой пластическое полупространство.

       Косой удар жесткой абразивной частицы по пластическому полу­пространству описывается системой уравнений:

где m1- масса частицы; h - глубина внедрения мм;τ—время с; N — нор­мальное усилие Н; F    касательное усилие Н.

       Контактное взаимодействие и относительное движение соударяющих­ся тел в значительной степени определяются характером их поверх­ностей. Интегральной оценкой затрат энергии, связанных с касательиым перемещением частицы, может быть коэффициент трения. Счи­тая, что касательное усилие обусловлено только трением (F=f(N)) и силы трения не влияют на распределения давления на площади контакта, систему  (3.1)   можно записать в виде

В начальный момент времени

тогда

откуда дли траектории движения частицы получим

где Со- скорость частицы в начальный момент удара; а — угол атаки рад.

Для определения массового съема материала воспользуемся правилом: при установившемся гидроабразивном износе отношение среднего объема (массы) удаленного при ударе одиночной частицы материала к среднему объему (массе) пластически выдавленного материала (ΔVд) есть величина постоянная

Коэффициент к, характеризующий связь между деформацией и износом, не зависит от времени обработки, скорости абразивных частиц и их кон­центрации в суспензии, а определяется только пластическими свойства­ми обрабатываемого материала и условиями деформирования (разме­рами абразивных частиц). Соотношение (3.3) получено при исследовании гидроабразивного износа частицами, внедряющимися в поверхность под углом 90°. Характер деформационных повреждений поверхности при косом ударе абразивной частицы зависит от ее угла атаки, поэтому коэффициент к будет являться функцией a и R. Выражение (3.3) запишем в виде

где Kα,R     функция угла атаки и радиуса частицы.

       Средний объем пластически выдавленного материала можно опреде­лить, если предположить, что он равен объему лунки, образовавшейся на обрабатываемой поверхности в результате удара абразивной частицы. Для определения объема лунки рассмотрим взаимодействие абразивной частицы с поверхностью. В общем случае удар абразивной частицы может быть разделен на два этапа: этап внедрения и этап вытеснения. Этап внедрения начинается в момент касания частицы с поверхностью и за­канчивается, когда нормальная составляющая скорости частицы стано­вится рамной нулю (dh/dτ = 0).

       При струйной ГАО различных материалов характер зависимостей массового съема от технологических параметров не изменяется. Это позволяет значительно сократить объем экспериментальных исследований, используя для для определения массового съема металла зависимости, полученные для какого-либо конкретного материала. Для исследования группы титановых и жаропрочных сплавов может быть использована формула:

       Где G-массовый съем для требуемого материала, мм, Km-коэффициент массового съема, зависящий от марки обрабатываемого материала  Gt-массовый съем металла при обработке титановых сплавов, мм.

       Зависимость массового съема металла от угла атаки носит перемен­ный характер (см. рис.  3.14). С увеличением α от 15 до 45º съем металла возрастает, достигая максимума при а = 45", затем наблю­дается снижение съема, а в диапазоне 75—90 º массовый съем изменя­ется не более, чем на 5...7 %. Такая зависимость сохраняется при работе с абразивными материалами разной зернистости. При увеличе­нии угла атаки от 40 до 50° съем металла изменяется на 5...10% (при ра0,4 МПа). Уменьшение размеров абразивных частиц и давле­ния воздуха на входе и активное сопло приводит к некоторому расшире­нию зоны максимального съема (до 35-55°), что имеет существенное значение при обработке криволинейных поверхностей.

6. КАЧЕСТВО ПОВЕРХНОСТНОГО СЛОЯ ПОСЛЕ СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ

 

       Состояние поверх костного слоя после механических и физико-механических методов обработки характеризуется в основном параметрами шероховатости, остаточными напряжениями и наклепом  (глубиной и степенью упрочнения). Поверхностный слой после струйной ГАО харак­теризуется такими же параметрами ,

       Шероховатость поверхности после струйной ГАО главным образом зависит от исходной шероховатости; скорости, угла атаки и размера абразивных частиц; времени обработки. При этом рассматриваются две стадии формирования микрорельефа. На первой происходит пластиче­ское деформирование и разрушение наиболее выступающих неровно­стей с одновременной упругой деформацией поверхности, подвергнутой действию гидроабразивной струи. Затем на всем обрабатываемом участ­ке происходит пластическая деформация и интенсивный съем основного металла с формированием однородной по всем направлениям микро­геометрии. Микрорельеф поверхности представляет собой совокупность следов (лунок), оставляемых на поверхности частицами абразива, при­чем расположение лунок носит случайный характер. Формирование микрорельефа происходит и течение вполне определенного времени, а затем процесс обработки стабилизируется и шероховатость поверхности не изменяется .

       При формировании шероховатости возможны три случая:

1) в процессе обработки исходная шероховатость поверхности уве­личивается;

2) формируется новый микрорельеф без изменения значения исходной шероховатости;

3) шероховатость поверхности в процессе обработки уменьшается. Возникновение того или иного случая, а также время, необходимое

для формирования нового микрорельефа, будут зависеть от высоты не­ровностей исходной поверхности, размеров лунок, оставляемых абра­зивными частицами, и количества частиц, контактирующих с обрабаты­ваемой поверхностью. Таким образом, реальные технологические осо­бенности процесса формирования микрорельефа позволяют дискретизировать его в виде последовательности единичных актов контактного взаимодействия на элементарном участке обрабатываемой поверхности. Такой подход дает возможность определять параметры шероховатости после струйной ГАО на основе имитационного моделирования процесса формирования микрорельефа обрабатываемой поверхности.

       При моделировании необходимо учитывать микрорельеф исходной поверхности, параметры потока абразивных частиц, контактное взаимо­действие частиц с поверхностью и микрорельеф поверхности после ее обработки. Основой математической модели является модель единичного акта контактною взаимодействия абразивной частицы с поверхностью. Рассмотрим этапы построения математической модели. Перед началом моделирования должны быть заданы параметры шероховатости исход­ной поверхности. В рамках предлагаемой модели исходное состояние микрорельефа поверхности характеризуется максимальной высотой не­ровностей профиля Rmax и средним арифметическим отклонением про­филя R„. Микрорельеф обрабатываемой поверхности представим в виде изотропной функции Z=f(х, у). Контактное взаимодействие абразивных частиц будем рассматривать на элементарном участке, размеры которого выбираются с учетом формы, размеров и точности изготовления обраба­тываемой поверхности. В большинстве случаев элементарный участок может быть представлен в виде квадратной площадки с размером сто­роны, равным базовой длине при исследовании шероховатости. Пред положение об изотропности функции Z позволяет существенно упростить моделирование процесса обработки за счет перехода от пространствен­ного моделирования к моделированию на профиле. Определение формы поверхности и вычисление параметров шероховатости производятся по некоторому сечению, взятому в пределах элементарного участка, причем характеристики шероховатости не будут зависеть от выбора сечения. Пространственное распределение функции Z может быть получено по проекции профиля сечения.

       Имитационное моделирование проводится с использованием ЭВМ. Это накладывает определенные ограничения на представление профили поверхности, связанные с дискретностью записи информации в память ЭВМ. Поэтому профиль обрабатываемой поверхности представляется в виде массива чисел M(i), i принадлежит(l, N0), где M{i) высота профиля относительно средней линии; i — номер точки профиля; N0 — число точек профиля.

Поток абразивных частиц и элементарный акт контактного взаимо­действия частицы с поверхностью описываются в рамках допущений, принятых в подразд. 3.1. Количество абразивных частиц, взаимодействующих с обрабатываемой поверхностью на элементарном участке, зависит от массового расхода суспензии через струйный аппарат, концентратами абразивного материала в суспензии, времени обработки и отношения площади элементарного участка к площади, охватываемой гидроабразивной струей в единицу времени. Общее количество q абра­зивных частиц, контактирующих, с поверхностью на площади, охваты­ваемой гидроабразивной струей, определяется формулой (3.15); тогда число единичных актов контактного взаимодействия на элементарном участке в единицу времени будет

где , площадь элементарного участка; Fc — площадь, охватываемая гидроабразивной струей в единицу времени.

       Контакт абразивной частицы с поверхностью происходит в случайной точке элементарного участка. Для упрощения модели будем считать, что единичный акт контактного взаимодействия происходит в случайной точке профиля M (i), причем в этой точке частица достигает максималь­ной глубины внедрения. Кроме того, при формировании нового профиля поверхности не будем учитывать перераспределение по профилю ма­териала, вытесненного из лунки в момент удара.

       Каждый еденичный акт контактного взаимодействия вызывает опре­деленные изменения о обрабатываемой поверхности. Происходит дефор­мация выступов профиля, удаление материала из лунки, в окрестности точки контакта формируется новый микрорельеф поверхности, изменяется положение средней линии профиля. на рис. 3.15 показана схема единичного контакта взаимодействия абразивной частицы с обрабаты­ваемой поверхностью. В случайной точке j частица достигает макси­мальной глубины внедрения. Высота профиля микрорельефа относи- -тельно средней линии в точках, где произошла деформация, опреде­ляется по следующей формуле:

где Мi-=j — исходная высота профиля в точке j; hmax — максимальная глубина внедрения, мм; δ— интервал дискретизации профиля; n = 1, £, £ — число интервалов δ , укладывающихся в размеры радиуса частицы R.

       Моделирование процесса обработки в виде последовательности еди­ничных актов взаимодействия не точно отражает реальный процесс, при котором с поверхностью одновременно контактирует большое число абра­зивных частиц. Однако реальный процесс происходит в течение вполне определенного промежутка времени, и число взаимодействующих с по­верхностью абразивных частиц известно. Поэтому при осуществлении моделирования по известному числу взаимодействий конечный результат с достаточной степенью точности соответствует реальному процессу. Для описания нового профиля поверхности, полученного в результате, моделирования, производится корректировка положения средней линии профиля но следующей формуле:

где Δh - изменение положения средней линии, мм; M’jвысота нового профиля относительно средней линии исходного профиля, мм.

       Высота нового профиля относительно его средней линии определяет­ся по следующей формуле:

Предлагаемая математическая модель формирования микрорельефа поверхностного слоя является универсальной и позволяет осуществлять имитационное моделирование для различных характеристик шерохо­ватости исходной поверхности в широком диапазоне изменения техно­логических параметров струйной ГАО. На рис. 3.16 приведена схема алгоритма моделирования формирования микрорельефа поверхности при струйной ГАО.

Исходными данными для проведения процесса моделирования являются: характеристики обрабатываемого материала плотность ρа, предел текучести σт; характеристики исходной шероховатости по­верхности — Rа, Rмах, базовая длина характеристики абразивного материала — плотность частиц ρаб, насыпная плотность ρаб,Н, средний радиус частик R; характеристики гидроабразивной струи - плотность жидкой фазы ρж, концентрация абразивных частиц в суспензии К, мас­совый расход суспензии mc; скорость абразивных частиц Са; угол атаки а; площадь, охватываемая гидроабразивной струей за одну секунду 1'с, число отрезков дискретизации базовой длины профиля л; время об­работки Т.

       Моделирование начинается с создания исходного профиля обраба­тываемой поверхности, дли чего формируется массив M(i) случайных чисел, равномерно распределенных в интервале от -5Rmax доRmax. Среднее арифметическое отклонение формируемого массива должно быть равно исходному значению Rmax Далее по формулам (3.15), (3.25). (3.26) определяют максимальную глубину внедрения аб­разивной частицы и число единичных актов взаимодействия на элемен­тарном участке обрабатываемой поверхности.

       Цикл моделирования начинается с выработки случайной точки па профиле, в которой происходит контакт абразивной частицы с по­верхностью. По формуле (3.47) определяется высота профиля микро­рельефа относительно его исходной средней линии в точках, где произошла деформация. После каждого цикла моделирования по формулам (3.48). (3.49) производится корректировка положении средней линии, опреде­ление высоты нового профиля и проверка на окончание процесса моде­лирования на завершающем этапе моделирования определяют пара­метры шероховатости поверхности, сформированной в результате моде­лирования. Разработанная математическая модель позволяет определять пять параметров шероховатости: Ra , Rmax, Rz , Sm , S. Для осуществления процесса моделирования был разработан программный комплекс для ЭВМ.

       На рис. 3.17,.... 3.19 приведены зависимости шероховатости обрабо­танной поверхности от скорости, размеров и угла атаки абразивных частиц, полученные в результате моделирования обработки титанового сплава ВТ9. С увеличением Ca и R шероховатость поверхности возрастает по линейной зависимости. Максимальное значение шероховатости со­ответствует углу атаки а =90°. Результаты моделирования формирования микрорельефа поверхностного слоя при струйной ГАО хорошо согласу­ются с экспериментальными данными

       Для подтверждения теоретических зависимостей были проведены экспериментальные исследования формировании микрорельефа поверх­ностного слоя при струйной ГАО. которые осуществлялись в два этапа. На первом этапе определялась шероховатость поверхности, соответ­ствующая зернистости абразивного материала при данных условиях обработки. Для получения эмпирических зависимостей шероховатости поверхности от параметров обработки исследовании проводились на тех же образцах, которые использовались при определении произво­дительности струйной ГАО и были обработаны в соответствии с мето­дикой центрального композиционного ротатабельного планирования вто­рого порядка. В качестве параметра оптимизации в данном случае было выбрано среднее арифметическое отклонение профиля от средней линии. Исходная шероховатость поверхности образцов Ra max равная 0,15... 0,2 мкм, была заведомо меньше шероховатости, которую можно было получить при любых сочетаниях параметров обработки, т. с. не оказы­вала влияния на формирование микрорельефа поверхности.

На втором этапе было исследовано влияние исходной шерохова­тости на состояние поверхности после струйной ГАО. При этом был реализован случай, когда обработка происходит с уменьшением исходной шероховатости. Эксперименты были проведены на образцах из ВТ9, ЭИ961, ЖС6Ф, которые в зависимости от исходной шероховатости были разделены на следующие группы: Ra исх=0,15...0,2 мкм, Ra исх= 0,3...0.4 мкм; Ra исх = 0,5...0,6 мкм; Ra исх =0.7...0,8 мкм; Ra исх = 0,9.1,0 мкм; Ra исх= I.I...1.25 мкм; Ra исх= 1,4.-l.6 мкм;  1.8...2,0 мкм; Ra исх= 2,2...2,5 мкм; Ra исх =2,7...3,0 мкм. Заданные зна­чения шероховатости поверхности образцов были получены шлифованием с последующей ручной доводкой (если это было необходимо) на чугунных плитах абразивами различной зернистости. В процессе исследований были проведены серии однофакторных экспериментов с целью получения зависимостей шероховатости поверхности от времени обработки при различной исходной шероховатости, а также для определения мини­мального времени, необходимого для достижения шероховатости, со­ответствующей данной зернистости абразивного материала. Параметры обработки принимались следующими: абразивный материал электрокорунд 24А зернистости М20; М40; М6З; 8; 10; К=20%; pn*= = 0,1...0,5 МПа; L=50... 150 мм; α= 15...900; T=0...300 с. Интенсивность формирования микрорельефа поверхности при струйной ГАО зависит от количества абразивных частиц, воздействующих на единицу обрабатываемой площади в единицу времени. При прочих равных условиях увеличение площади будет приводить к увеличению времени, необходимого для достижения заданного значения шероховатости. Поэтому для сопо­ставимости результатов во всех экспериментах площадь обрабатываемой поверхности была постоянной (3000 мм2) при любых сочетаниях варьи­рованных параметров обработки.

       В результате экспериментальных исследований получены эмпирические формулы для расчета шероховатостей поверхности, которые имеют следующий вид:

:

Исследования показали, что зависимость шероховатости обработанной поверхности от размеров абразивных частиц является линейной (рис. 3.20). С увеличением зернистости абразивного материала высота микронеровностей резко возрастает, так как увеличиваются размеры лунок, оставляемых на обрабатываемой поверхности абразивными частицами. Подтверждением этому служат профилограммы поверхностей, обработанных абразивными материалами различной зернистости (рис. 3.21). Для каждого размера абразивных частиц существует максимально достижимое (при данных условиях обработки) значение шероховатости поверхности. Значения шероховатости поверхности, которые могут быть получены в результате обработки абразивными мате риалами различной зернистости, приведены в табл. 3.2.

       На рис.3.22 представлены графики зависимости шероховатости от давления воздуха на входе в активное сопло. С увеличением р* от 0,1 до 0,5 МПа значения Rас увеличиваются примерно на 30...60 % независимо от зернистости абразива, причем в этом диапазоне давлений зависимости Rа от р* носят линейный характер. С увеличением расстояния от среза смесительного сопла до обрабатываемой поверхности в интервале 50...150 мм шероховатость уменьшается примерно на 40...45 % (рис. 3.23), что объясняется снижением скорости движения абразивных частиц. Зависимость шероховатости поверхности от угла атаки а носит ступенчатый характер. С увеличением а от 15 до 45° шероховатость поверхности увеличивается, а затем не изменяется (рис. 3.24). С увеличением о от 15 до 45° глубина внедрения hmax увеличивается более чем в 3,5 раза. В интервале а = 45...90° изменение hmax не превышает 30%, при этом размеры площадки контакта абразивной частицы с поверхностью увеличиваются всего на 15 %. Поэтому при изменении a от 45 до 90° шеро­ховатость поверхности практически не изменяется. Проведенные экспери­менты доказали, что нет существенных различий в значениях шерохова­тости, полученных при обработке образцов из материалов ВТ9, ВТ20, ЖС6Ф, Э437Б, Э961 (разброс значений шероховатости не более 5%),

что по-видимому, объясняется близкими значениями глубин внедрения абразивных частиц.

       На рис. 3.20, 3-22...3.24 штриховыми линиями показаны графики, по­дученные в результате математического моделирования процесса форми­рования микрорельефа обрабатываемой поверхности. Теоретические и экспериментальные зависимости хорошо согласуются между собой, раз­брос значений не превышает 17...22 %, что является вполне удовлетво­рительным для такого сложного процесса обработки.

       При струйной ГАО формирование микрорельефа происходит за счет удаления материала с обрабатываемой поверхности. Чем интенсивнее съем материала, тем меньше время, необходимое для достижения значе­ния шероховатости, соответствующего данным условиям обработки. В об­щем случае время, необходимое для получения заданной шероховатости поверхности, зависит от параметров обработки, исходной шероховато­сти {Rа maх) и площади обрабатываемой поверхности.

       Эксперименты показали, что если в процессе струйной ГАО шерохо­ватость поверхности увеличивается, то, независимо от значения Ra исх формирование нового микрорельефа происходит в течение первых 50... 70 с, а затем шероховатость не изменяется (рис, 3.25). Полученное в данном случае значение шероховатости соответствует зернистости абра­зивного материала. Если в процессе обработки исходная шероховатость поверхности уменьшается, то время, которое необходимо для получения шероховатости, соответствующей зернистости абразивного материала при данных условиях обработки, будет зависеть от соотношении между Ra исх и Ra аб. С увеличением исходной шероховатости необходимое время обработки увеличивается (рис. 3.26). Экспериментальные исследования показали, что получение значений шероховатости, равных Ra аб возмож­но, если Ra исх не превышает Ra аб более чем в 3,5...4 раза. В противном случае уменьшение шероховатости происходит до некоторого значения после чего микрорельеф обрабатываемой поверхности ко­пируется.

       Одна и та же шероховатость поверхности может быть получена при различных сочетаниях технологических параметров. Например, обработ­ка абразивным материалом зернистости М40 при pв*=0,4 МПа, а=45° дает значение Ra=0,68...0,7 мкм, такая же шероховатость получается при зернистости М50, рв*=0,25 МПа, а=45° и М63, рв*=0,2 МПа, а=32°. Вре­мя обработки для каждого из трех случаев различно (рис. 3.27). Мини-

мальное время получается при технологических параметрах, обеспечи­вающих максимальный съем металла — М40, рв*=0,4 МПа, а=45°.

       С достаточной степенью точности зависимость шероховатости обрабатываемой поверхности от времени струйной ГАО при различных зна­чениях исходной шероховатости может быть описана следующей эмпи­рической формулой:

Где    линейный съем материала с обрабатываемой поверхности, G- массовый съем материала, г/с: F — площадь обрабатываемой поверхности, мм2; рм — плотность обрабатываемого материала, г/см3; Т  - время обработки, с.

       Полученные экспериментально зависимости (3.50), (3.51), (3.52) ше­роховатости поверхности от основных технологических параметров об­работки позволяют прогнозировать результаты струйной ГАО, а также решать задачу выбора технологических параметров, обеспечивающих максимальную производительность обработки при заданной шерохова­тости.

       Напряженное состояние поверхностного слоя при струйной ГАО преж­де всего зависит от размеров (массы), скорости (определяется давле­нием воздуха на входе в активное сопло) и угла атаки абразивных частиц Для выяснения степени влияния каждого из этих параметров на остаточ­ные напряжения и наклеп были проведены эксперименты на образцах из ВТ9, ЭИ961 и ЖС6Ф при следующих технологических параметрах струйной ГАО: абразивный материал — электрокорунд 24А зернистости 10, М63. М40, М20; К=20 %; po*=0,1...0.4 МПа; а=15...90"; L=100 мм: T=4 мин. Исследования остаточных напряжений проводились на образ­цах с размерами 3,8X10X100 мм, для определения наклепа использова­лись образцы с размерами 3.8Х 10X30 мм. Для снятия начальных макро-напряжений и наклепа все образцы подвергались вакуумному отжигу. Поcледовательность выполнения работ при подготовке и проведении струнной ГАО была такой же, как и при исследовании производитель­ности обработки.

       Остаточные напряжения определялись путем измерения деформации образца при непрерывном травлении с последующим расчетом по фор муле И. П. Давиденкова ,

Глубина и степень наклепа после струйной ГАО определялись путем измерении микротвердости поверхности косых срезов образцов на приборе ПМТ-3 при нагрузках 0,245...0,98 Н. Косые срезы были получены притир­кой образцов абразивными пастами на специальном приспособлении, угол среза равен 1°.

       При струйной ГАО абразивные частицы взаимодействуют с обраба­тываемой поверхностью в среде жидкости, которая, обтекая абразивные частицы, проникает непосредственно в зону контакта. Температурные структурные изменения материала в поверхностном слое при таких усло­виях происходить не могут. Поэтому возникновение остаточных напря­жений обусловлено деформационными процессами, происходящими при многократных ударных воздействиях абразивных частиц на обрабаты­ваемую поверхность. Характер деформирования поверхности абразивны­ми частицами зависит прежде всего от их скорости, массы (размеров) и угла атаки.

       В результате экспериментальных исследований было установлено, что при любых сочетаниях варьируемых технологических параметров в поверхностном слое формируются остаточные напряжении сжатия без подслойного максимума. Общая глубина распространения остаточных напряжений не превышает 50...60 мкм. На рис. 3.28 приведены эпюры остаточных напряжений, полученные при обработке образцов абразив­ными материалами различной зернистости. С увеличением размеров абразивных частиц величина и глубина залегании напряжений увеличи­ваются. Максимум напряжений находится на поверхности, причем на­блюдается резкое снижение этих напряжений в слое толщиной 5... 15 мкм. Характер распространения остаточных напряжений при обработке раз­личных материалов не изменяется. В то же время уровень напряжении у титанового сплава ВТО несколько ниже, чем у сплавов ЖС6Ф и ЭИ961.

       С увеличением давления воздуха на входе в активное сопло величина и глубина залегания остаточных напряжений увеличиваются (рис. 3.29) независимо от обрабатываемого материала и зернистости абразивного материала.

       На рис 3.30 приведены эпюры остаточных напряжений при обработ­ке на различных углах атаки. Максимальный уровень напряжений имеет место при а=90и; Это объясняется тем, что па углах, близких к 90º, практически вся энергия абразивных частиц расходуется на удар с поверхность. С уменьшением а нормальная составляющая скорости дви­жения уменьшается, что приводит к снижению величины и глубины за легация напряжений, причем наиболее сильное снижение происходит к диапазоне изменения угла атаки от 90º до 60...70° (примерно в 1,7. .2,0 раза).

       Определение глубины и степени наклепа проводилось на образцах, прошедших обработку при тех же технологических параметрах, что и об­разцы для исследования остаточных напряжений. Результаты измерения

микротвердости на поверхности косых срезов показали, что при обработ­ке абразивными материалами зернистости М63 и менее микротвердость но глубине поверхностного слоя практически не изменяется (рис. 3.31). При использовании абразивных материалов зернистости 10 увеличива­ется микротвердость на 4...6 % только при рв*=0,4 МПа и а=90", причем глубина упрочненного слоя не превышает 5...7 мкм.

       Наличие значительных остаточных напряжений сжатия при малой степени деформационного упрочнения обуславливает повышенную стой­кость поверхностного слоя деталей к образованию микротрещин в усло­виях повышенных температур и знакопеременных нагрузок.

7. СХЕМЫ И КОНСТРУКЦИИ СТРУЙНЫХ АППАРАТОВ

 

7.1 КЛАССИФИКАЦИЯ И ТРЕБОВАНИЯ К СТРУЙНЫМ АППАРАТАМ

       Производительность и качество струйной ГАО зависят от энергетиче­ских возможностей гидроабразивной струи, формируемой струйным ап­паратом. Основными требованиями, предъявляемыми к струйным аппара­там, являются: обеспечение максимальной скорости струи при минималь­ном расходе энергоносителя и максимальном расходе гидроабразивной суспензии; обеспечение равномерного распределения абразивных частиц по сечению струи. Первое требование определяет производительность, а второе -  качество обработки.

       Число возможных схем, а также разработанных конструкций струйных аппаратов достаточно велико. Па рис, 4.1 приведена классификация струйных аппаратов, разработанная в результате анализа опубликован­ных работ. В настоящее время при струйной ГАО наибольшее приме­нение находят аппараты с принудительной насосной подачей суспензии в камеру смешения и последующим ее разгоном сжатым воздухом. Такие аппараты стабильно работают в широком диапазоне изменения давления воздуха и расхода суспензии, обеспечивая достаточно высокую произво­дительность и качество обработки. Совершенствование струйных аппара­тов ведется по нескольким направлениям: увеличение скорости гидроаб­разивной струи; формирование струй различной формы; уменьшение изно­са сопел. Эффективность работы струйного аппарата определяется его геометрическими параметрами, основными из которых являются: размеры и отношение площадей активною и смесительного сопел; расстояние между активным и смесительным соплами; длина сопел; угол сходимости смесительного сопла; размеры камеры смешения и т. д.

       Скорость истечения гидроабразивной струи зависит от размеров и от. ношения площадей проходных сечений сопел По данным Ш. М. Билика максимальная производительность обработки наблюдается при диаметра, активного и смесительного сопел, равных 8 мм для абразивных материи лов зернистости 12...60 и 10 мм для М40 и меньше.

       Разгон гидроабразивной суспензии осуществляется в смесительном сопле струйного аппарата. Длина сопла должна выбираться таким образом, чтобы обеспечить минимальные потери энергии при разгоне, рав­номерное поле скоростей па выходе из сопла и заданный угол распыла струи. В литературе рекомендуется выбирать длину смесительного сопла из соотношения lс=(6...10)dc где dc— диаметр сопла, мм. В cмесительных соплах струйных аппаратов для струйной ГАО происходит движение трехфазной смеси, поэтому это соотношение, полученное для одно- и двухфазных потоков, требует экспериментальной проверки. Практически во всех конструкциях струйных аппаратов предусмотрено регулирование расстояния между выходным торцем активною сопла и входным торцем смесительного сопла, что объясняется отсутствием надежных рекомендаций по выбору этого параметра.

       Производительность и качество струйной ГАО могут быть повышены за счет применения струйных аппаратов, формирующих плоскую гидро­абразивную струю. Щелевые смесительные сопла, применяемые в этих аппаратах, обеспечивают но сравнению с круглыми более равномерный съем материала и наиболее эффективны при обработке сложнопрофильных поверхностей.

       Внутренняя поверхность смесительного сопла при работе струйного аппарата подвергается интенсивному абразивному воздействию. Поэтому материалы, из которых изготавливаются сопла, должны иметь повышен­ную износостойкость. В настоящее время для изготовления сопел струйных аппаратов широко используются твердые сплавы и металлокерами­ка. Стойкость таких сопел составляет около 100 часов. В несколько раз большую стойкость имеют сопла из карбида вольфрама и карбида бора, однако их стоимость весьма высока. Уменьшить стоимость сопел можно за счет применения для их изготовления обычных конструкционных ма­териалов с последующим нанесением на внутреннюю поверхность защитного износостойкого покрытия.

Технология изготовления сопел струйного аппарата должна обеспечи­вать минимальную шероховатость внутренней поверхности и правильную геометрическую форму проходных сечений. При сборке струйного аппара­та должна быть обеспечена соосность активного и смесительного сопел, что позволяет уменьшить потери энергии при разгоне суспензии и повысить стойкость сопел за счет исключения одностороннего износа.

7.2 КОНСТРУКЦИИ СТРУЙНЫХ АППАРАТОВ

 

7.2.1 Струйные аппараты, формирующие струи круглого сечения

 

       В настоящее время разработано и используется на производстве достаточно большое количество струнных аппаратов, формирующих гидроабразивную струю круглого сечения. Ниже рассмотрены наиболее часто применяемые конструкции.

На рис. 4.25 представлена конструкция струйного аппарата, позво­ляющая изменять его геометрические параметры. На корпус 4, пред­ставляющий собой втулку с наружной резьбой, навертываются перед­ний ,3 и задний 7 корпусы. На переднем корпусе 3 гайкой 2 крепится смесительное сопло 1. В задний корпус 7 ввернута трубка 6, на конец которой навертывается активное сопло 5. Трубка в корпусе 7 крепится гайкой 10. На нижнем конце трубки с помощью накидной ганки 11 крепится штуцер 12. По этому штуцеру к струйному аппарату подво­дится сжатый воздух. К корпусу 7 накидной гайкой 8 присоединяется штуцер 9 для подвода суспензии.

       Сменные активные сопла 5 имеют диаметры выходных сечений 4...14 мм, длину в пределах 52…64 мм, что позволяет регулировать расстояние между активным и смесительным соплами. Смена активного и смесительного сопел и расстояния между ними осу­ществляется с малой затратой времени.

       Для обработки фасонных и плоских поверхностей применяют струйный аппарат, конструкция которого представлена на рис. 4.26. Аппарат состоит из корпуса 5, в который вставлен ствол 4 со сменным активным соплом 2. В корпус с передней стороны ввернут стакан 3 со сменным смесительным соплом / С другой стороны кор­пуса через штуцер в в аппарат подается суспензия, а через штуцер 7 - сжатый воздух. Сжатый воздух, проходя между конусами активного и смесительного сопел, эжектирует суспензию и выбрасы­вает ее на обрабатываемую поверхность.

       Схема струйного аппарата для обработки отверстий показана на рис. 4.27. Он состоит из корпуса 1, направляющего наконеч­ника 5, активного сопла 2 и втулки 3. Разрезная шайба 4 фикси­рует положение втулки 3, через отверстии в которой в смеситель­ную камеру поступает суспензия. Последняя увлекается сжатым воз­духом и направляется через выходные отверстия в корпусе на обрабатываемую поверхность. Направление струи осуществляется профи­лем канала наконечника. При эксплуатации таких струйных аппара­тов быстро изнашиваются и требуют частой замены наконечники 5 и корпусы 1.

       Одним из существенных недостатков в работе струйного аппа­рата является абразивный износ рабочей части смесительного сопла. Для уменьшения этого недостатка используется струйный аппарат, конструкция которого представлена на рис. 4.28. Аппарат состоит из кор­пуса 1, втулки 2 для подачи суспензии, срез выходного отверстия которой расположен на 1/3 длины рабочей части смесительного соп­ла 5, и штуцера 3 для подвода сжатого воздуха. Во втулке 2 выполнены отверстия 4, которые равномерно расположены под острым углом к оси втулки по направлению движения абразивных частиц в непосредственной близости от среза выходного отверстии втулки.

       При работе сжатый воздух через штуцер 3 подается в кольцевую щель между втулкой 2 и корпусом 1 в рабочую часть смесительно­го сопла 5. При обтекании втулки 2 в кольцевом потоке создает­ся разрежение, которое способствует всасыванию абразивных частиц вме­сте С воздухом через отверстия 4 в рабочую часть сопла 5. Благо­даря тому, что скорость в центре потока выше, чем на периферии.

абразивные частицы стремятся в центр потока, поэтому он проходит рабочую часть сопла 5, не касаясь его стенок. В результате этого абразивный износ смесительного сопла 5 значительно уменьшается.

       На рис. 4.29 представлена конструкция струйного аппарата с соплом из минералокерамических колец. В корпусе 3 установлено активное сопло 2, в которое через штуцер 6 и муфту 5 подводит­ся сжатый воздух. Подвод суспензии к аппарату осуществляется через штуцер 4. Смесительное сопло выполнено в виде сменных минерало­керамических колец 1, стойкость которых к абразивному износу лежит в пределах 90... 100 часов работы.

       Струйный аппарат, конструкция которого представлена на рис. 4.30, позволяет повысить производительность обработки. Аппарат имеет ко­нус 1, корпус 2, активное сопло 3, кольцо 4, стакан 5, воздухо­провод 6 и штуцер дли подвода суспензии 7. Корпус 2 полого цилинд­ра, переходящего в расширяющийся внутренний конус, соединяется

наружной резьбой со стаканом 5. К стакану 5 приварен штуцер 7 для подвода суспензии. Через центральное отверстие донышка стакана уста­новлен воздухопровод 6, соединенный посредством сварки с кольцом 4. На наружную поверхность кольца навинчено активное сопло 3, а к переднему торцу кольца при помощи центрального болта крепит­ся конус 1 таким образом, что конус 1 и коническая поверхность корпуса 2 образуют в сборе камеру смешивания и разгона суспен­зии, переходящую в кольцевое сопло.

       Суспензия через штуцер 7 подается в полость, образованную ста­каном 5 и воздухопроводом 6 , затем по кольцевому каналу поступа­ет в камеру смешивания и разгона. Под действием ускоренной струи

воздуха суспензия смешивается, разгоняется и выбрасывается из аппа­рата в виде кольцевой рабочей струи. Потоки суспензии, соприка­сающиеся с поверхностями конуса и корпуса, на которых выполнены сферические выступы, подвергаются турбулентным пульсациям, т. е. пристеночные потоки отрываются от образующих поверхностей. Это явление снижает износ детали струйного аппарата и уменьшает сопротивление движению основного потока.

       В производстве используется значительное количество установок, в которых применяются ручные струйные аппараты. При эксплуатации эти аппараты располагаются в рабочей камере, оператор держит их в руках и тем самым направляет струю суспензии на обрабатывае­мую поверхность.

       На рис. 4.31 представлены конструкции типичных ручных струй­ных аппаратов. В корпусе 2 (рис. 4.31, а) закреплены штуцер 4 для подвода суспензии и активное сопло 3 для подачи сжатого воздуха. Смесительное сопло 1 ввинчивается в корпус по резьбе. Тем самым обеспе­чивается быстрая замена изнашиваемого сопла. К корпусу прикреп­лена ручка 5, необходимая для эксплуатации струйного аппарата.

       В аппарате, показанном на рис. 4.31, б, в отличие от ранее описанной конструкции воздух и суспензия в смесительное сопло посту­пают параллельными потоками. В корпусе 3 закреплены активное соп­ло 4 и штуцер 5 для подвода суспензии. Для регулировки положения активного сопла относительно смесительного используется винт 5. Сме­сительное сопло 1 закрепляется в корпусе 3 резиновой крышкой 2, что позволяет осуществлять быструю замену сопла. Сжатый воздух подается в струйный аппарат через штуцер 7 и муфту 6. При работе на штуцеры устанавливаются шланги, держась за которые, опе­ратор направляет струю на обрабатываемую заготовку.

7.2.2 Струйные аппараты, формирующие плоские струи

 

       Плоская гидроабразивная струя в отличие от осесимметричной обладает более широкими технологическими возможностями, особенно при обработке сложнопрофильных поверхностей. Применение струйных аппаратов, формирующих плоские гидроабразивные струи, позволяет в большинстве случаев значительно упростить схему обработки, обеспе­чить равномерный съем материала при стабильном получении задан­ных показателей поверхностного слоя обрабатываемой детали. В то же время формирование плоской струи, в которой профиль скорости и рас­пределение абразивных частиц по ширине были бы равномерными, является более сложной задачей, чем в случае струи круглого сечения. Несколько усложняется конструкция струйного аппарата, а также технология изготовления активных и смесительных сопел.

       В отличие от распространенных струйных аппаратов, формирую­щих круглые струи, число реально действующих конструкций струйных аппаратов для формирования плоских гидроабразивных струй ограни­чено. Плоскую струю можно получить различными способами.

       На рис. 4.32 показан струйный аппарат, который формирует струю с равномерным по ширине профилем скорости за счет перекрытия расположенных в ряд с определенным шагом струй круглого сечения. Аппарат используется для обработки сложнопрофильных поверхностей, причем его конструкция позволяет в широких пределах регулировать

размеры зоны обработки. Струйный аппарат состоит из корпуса 1 со штуцером 2, через который подается суспензия. В корпусе 1 уста­новлены секции активных 3 и смесительных 4 сопел, причем расстояние между осями сопел выбирается из соотношения h=kdс, где ккоэффициент смещения осей, изменяющийся в пределах 1,1...2,9 и за­висящий от угла распыла сопла β и диаметра смесительного сопла dс. Секция активных сопел 3 имеет распределительную камеру 5, закрытую крышкой 6, на которой установлен штуцер 7, служащий Для подачи активного газа (воздуха). На крышке 6 установлены запорные устройства 8 активных сопел 3. Для уменьше­ния износа выходной части смесительные сопла 10 снабжены керамиче­скими вставками 11.

       Струйный аппарат работает следующим образом. Воздух через штуцер 7 подается в распределительную камеру 5, откуда попадает в активные сопла 9, где разгоняется до звуковой скорости. Одно­временно суспензия через штуцер 2 поступает к смесительным соплам 10, где происходит ее подмешивание к потоку воздуха. Гидроабразивные струи 12, выходящие из смесительных сопел, имеют угол распыла β и пересекаются в плоскости X—X, за которой образуется сплошной гидроабразивный поток. В результате наложения и взаимодействии от­дельных гидроабразивных струй происходит выравнивание поля скоро­стей внутри сплошного потока. На некотором расстоянии L от смесительных сопел, которое зависит от угла распыла струи, выходного диаметра смесительных сопел и расстояния между их осями, ско­рости внутри потока выравниваются настолько, что обеспечивают равно­мерный съем материала с обрабатываемой поверхности.

       Для обработки поверхностей различных размеров без изменения по­ложения струйного аппарата активные сопла имеют запорные устрой­ства 8. Перекрывая доступ воздуха к части активных сопел, можно регулировать размеры зоны обработки, что расширяет технологиче­ские возможности струйного аппарата.

       В большинстве случаев плоские гидроабразивные струи формируют­ся струйными аппаратами, в которых смесительное сопло выполнено в виде щели. На рис. 4.33 приведены конструкции щелевых смеситель­ных сопел. Сопло (рис. 4.33, а) с размерами выходного отверстия 5X16 мм состоит из двух половин, соединенных винтами. На внутрен­нюю поверхность сопла нанесено износостойкое покрытие на основе карби­да вольфрама. Разъемная конструкция позволяет по мере износа покры­тия наносить новое, что значительно увеличивает срок службы сопла. На рис. 4.33, б показано щелевое сопло с размерами выходного отверстия 4X16 мм. Сопла данной конструкции изготавливаются пу­тем спекании абразивного порошка черного карбида кремния и имеют срок службы более 100 часов.

       На рис. 4.34 приведена конструкция струйного аппарата со щелевым соплом, предназначенного для обработки фасонных поверхностей (пресс-форм) . Аппарат работает следующим образом. Гидроабра­зивная суспензия через пульпопровод 2 поступает в корпус 1, который заканчивается насадкой прямоугольного сечения. Сюда же через трубопровод 4 поступает сжатый воздух. Смешиваясь с воздухом, суспен­зия разгоняется в камере смешивания и с большой скоростью выходит из щели под заданным углом, который регулируется с помощью подвес­ки 3, на обрабатываемую деталь 5.

       Для обработки лопаток ГТД используется струйный аппарат, показан­ный на рис. 4.35. Конструкция струйного аппарата позволяет устанав­ливать щелевые смесительные сопла с шириной выходного отверстия до 50 мм. Аппарат состоит из смесительного сопла 1, двух корпу­сов 2 и 10, соединенных винтами 4, активного сопла 3, закрепленного с помощью винтов 12 на переходни­ке 5, крышки в со штуцером 9 для подачи сжатого воздуха, крышки 7 со штуцером 15 для подачи суспен­зии, клина 14, приваренного к крыш­ке 6 и служащего для разделения потока суспензии, кронштейна 11 для крепления струйного аппарата, штифтов 13 для центрирования относительно друг друга смеситель­ного и активного сопел. Регулировка расстояния между выходным торцем активного сопла и входным горнем смесительного сопла осу­ществляется гайками 8. Смесительное сопло струйного аппарата по аналогии с соплом, показанным на рис. 4.33а состоит из двух поло­вин, на внутреннюю поверхность которых нанесено износостойкое покры­тие. При ширине выходного отверстия более 20 мм на внутренней поверхности сопла с равномерным шагом выполняются радиусные канав­ки, диаметры   DR   которых выбирают равными 1,2...1,5, а шаг   Hk 1,0—2,2  высоты hc   щелевою отверстии   При  этом  активное  сопло выполняется в виде ряда круглых отверстий, расположенных соосно с радиусными канавками. Данная конструкция смесительного и активного сопел обеспечивает равномерное распределение абразивных частиц по сечению гидроабразивной струи, что приводит к повышению производи­тельности обработки при более равномерном съеме материала.

       Было отмечено, что при прочих равных условиях (отно­шение площадей сечений, расходов и давлений подачи воздуха и суспен­зии и т. д.) струйные аппараты со щелевыми соплами обеспечи­вают более высокую производительность обработки, чем аппараты с круг­лыми соплами. Иллюстрацией этому служат графики на рис. 4.36.

       Результаты исследования шероховатости поверхности после струйной ГАО щелевыми соплами показали, что она не отличается от шерохова­тости, получаемой при обработке соплами с круглым выходным сече­нием. Это объясняется весьма близкими значениями скорости частиц на оси в плоской и круглой струях (см. рис. 3.37, 4.20) при изменении рас­стояния от среза смесительного сопла в диапазоне от 5мм до 150 мм. Следует отметить хорошую стабильность результатов измерений шерохо­ватости поверхности после обработки щелевыми соплами, что объясняется более равномерным съемом металла.

       Исследования остаточных напряжений после обработки плоской гидроабразивной струей показали, что при одинаковой глубине залегания они имеют несколько большие значения (на 5...8 %), чем при обработке струей круглого сечения. Увеличение напряжений происходит за счет уве­личения и более равномерного распределения по обрабатываемой по­верхности абразивных частиц, имеющих в момент удара максималь­ную скорость (скорость на оси струн).

8. ЗАКОН БЕРНУЛЛИ

       Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь

— плотность жидкости,

     — скорость потока,

       — высота, на которой находится рассматриваемый элемент жидкости,

— давление.

       Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых — единица энергии, приходящейся на единицу объёма жидкости.

       Это соотношение, выведенное Даниилом Бернулли в 1738 г., было названо в его честь уравнением Бернулли. (Не путать с дифференциальным уравнением Бернулли.)

       Для горизонтальной трубы h = 0 и уравнение Бернулли принимает вид:   .

Перевод давления в скорость

Давление, МПа

Скорость, м/с

0.1

141

0.2

284

0.3

423

0.4

564

0.5

705

0.6

846

0.7

987

0.8

1128

0.9

1269

1.0

1410

 

9. ВЫВОДЫ

       Практика показала, что многие ручные слесарно-зачистные операции и слесарно-полировальные операции могут быть успешно заменены высокоэффективной механизированное или автоматизированной струйной гидроабразивной обработкой. Этот метод обработки обладает высокими технологическими возможностями, он может использоваться для различных видов обработки, например, для: скругления острых кромок и сопряженных радиусов; полировки и шлифовки сложных поверхностей; удаления заусенцев и зачистки сварных швов; снятия со всей поверхности или локально дефектного слоя; подготовки поверхности под покрытие; снятия небольшого припуска с целью снижения шероховатости поверхности; удаления оксидных пленок, нагара, различных повреждений с поверхностей деталей. При этом обеспечивается высокая производительность и хорошее качество поверхностного слоя.

       Однако этот метод обработки еще не получил широкого распространения. Это объясняется, в первую очередь, тем, что инженерно-технические работники предприятий недостаточно осведомлены о технологических возможностях струйной гидроабразивной обработки, они не располагают необходимыми материалами по выбору параметров и режимов обработки, применяемых абразивах и составах суспензии, конструкций струйных аппаратов, имеющегося технологического оборудования и т.п.

       Учитывая это, нужно стремиться показать возможности струйной гидроабразивной обработки, привести необходимые данные по разработке технологических процессов с использованием данного метода обработки, описать конструкции и методики расчета струйных аппаратов.

10. СПИСОК ЛИТЕРАТУРЫ

1. Биргср И. Л. и др. Конструктивная прочность материалов и деталей газотурбинных двигателей. М.: Машиностроение. 1981.

2. Бородин В. В. Определение эффективных областей применения техноло­гических процессов изготовления лопаток компрессора ГТД. М.:  НИИМАШ 1983. № 2.

3. Виноградов В. Н., Сорокин Г. М., Албаганчев А. Ю. Изнашивание при ударе. М.: Машиностроение. 1982.

4. Второв Е. Л., Мещеряков А. В., Беляев М. А., Шманев В. Л. Повышение технологической надежности деталей ГТД за счет внедрении гидроабразивной обработки на окончательных операциях изготовления // Материалы IX Всесоюз­ной научно-технической конференции «Конструкционная прочность двигателей». Куйбышев. 1983.

 5. Второв Е. Л., Мещеряков Л. В., Никифоров В. Г. Влияние режимов и схем гидроабразивной обработки образцов и лопаток ГТД на титановых и жаро­прочных сплином на производительности и качество поверхности // Прогрессивные методы в технологии производства авиадвигателей. Куйбышев: КуАИ. 1984..

6. Второв Е. Л., Мещеряков А. В., Попов Л. С, Никифоров В. Г. Влияние режимов гидроабразивной обработки жаропрочных и титановых сплавов на производительность и шероховатость//Прогрессивные методы проектирования технологических процессов и производства двигателей летательных аппаратов. Куйбышев: КуАИ. 1983.

7. Дейч М. Е., Филиппов Г. Л. Газодинамика двухфазных сред. М.: Энергоиздат. 1981.

8. Икрамов У. А. Расчетные методы оценки абразивного износа. М.: Машиностроение.1987.

9. Кащеев В. Н. Процессы в зоне фрикционного контакта металлов. М.: Машиностроение.1978.

10. Колымцев П. Т. Жаростойкие диффузионные покрытии. М.: Металлургия.1979.

11. Кононов В. К. Определение поверхностных напряжений с применением электронного автоматического самопишущего потенциометра ЭПП-09М // Высоко­эффективные методы механической обработки жаропрочных и титановых сплавов. Куйбышев; КуАИ. 1981.

12. Костенецкий  Б.   И. Износостойкость металлов. М.: Машиностроение.

1980.

13. Кошелев А. А., Эйзнер Л. А. Технологии и оборудование для автоматизированной гидроабразивной обработки деталей // Автоматизация техно­логических процессов в области машиностроения для животноводства и кормо­производства. Ростов-на-Дону: НИИТМ. 1981.

14. Крагельский И. В., Добычин М. Н., Комбалов В. С. Основы расчетов на трение и износ. М.: Машиностроение. 1977.

15. Мартынов А. И. Основы метода обработки деталей свободным абразивом, уплотненным инерционными силами. Саратов: Издательство Саратовского ун-та. 1981.

16. Мещеряков А. В., Второв Е. А., Никифоров В. Г. К вопросу о выборе геометрических параметров струйно-абразивного аппарата //Совершенствование технологических процессов изготовления и сборки авиадвигателей. Куйбышев: КуАИ. 1988.