Теплоснабжение жилого района г. Чокурдах
Коммунально-строительный техникум
Якутского государственного инженерно технического института.
Курсовой проект
по отоплению жилого района г. Чокурдах.
Выполнили: студенты 3-го курса гр. ТиТО-2000
Сорокин Андрей.
Проверил: преподаватель по курсу
“Теплоснабжение” Колодезникова А.Н.
г. Якутск 2002 г.
Содержание.
Стр. |
|
1. Исходные данные: |
2 |
2. Определение тепловых нагрузок района: |
3 |
3. График расхода тепла по продолжительности стояния температур наружного воздуха: |
6 |
4. График центрального качественного регулирования отпуска теплоты: |
8 |
5. Гидравлический расчёт тепловых сетей: |
12 |
6. Разработка монтажной схемы и выбора строительных конструкций тепловой сети: |
16 |
7. Теплоизоляционная конструкция: |
16 |
8. Расчёт опор: |
20 |
9. Водоподогреватели горячего водоснабжения: |
21 |
Библиографический список: |
28 |
Курсовой проект “Теплоснабжение”. |
1 |
1. Исходные данные.
1.1 Климатологические данные.
1. Населённый пункт: г. Чокурдах.
- Расчётная температура самой холодной пятидневки: -48 °С.
- Расчётная температура зимняя вентиляционная: -49 °С.
- Средняя годовая температура: -14,2 °С.
- Отопительный период:
- начало: 08.08,
- конец: 23.06,
- продолжительность: 318 суток,
- средняя температура наружного воздуха: -17,4 °С,
- градусо-дней: 11909.
1.2 Повторяемость температур наружного воздуха.
tн °С. |
Количество часов. |
–50 °С и ниже. |
756 |
–49,9 ÷ –45 °С. |
633 |
–44,9 ÷ –40 °С. |
628 |
–39,9 ÷ –35 °С. |
495 |
–34,9 ÷ –30 °С. |
456 |
–29,9 ÷ –25 °С. |
377 |
–24,9 ÷ –20 °С. |
329 |
–19,9÷ –15 °С. |
341 |
–14,9÷ –10 °С. |
377 |
–9,9 ÷ –5 °С. |
407 |
–4,9 ÷ 0 °С. |
514 |
+0,1 ÷ 5 °С. |
662 |
+5,1 ÷ 8 °С. |
553 |
Всего часов: 6528 ч. |
1.3. Средняя месячная и годовая температура наружного воздуха.
Январь |
Февраль |
Март |
Апрель |
Май |
Июнь |
Июль |
–35,5 |
–33,9 |
–28,3 |
–18,9 |
–6,1 |
5,8 |
9,7 |
Август |
Сентябрь |
Октябрь |
Ноябрь |
Декабрь |
год |
6,9 |
0,9 |
–12,4 |
–25,8 |
–33,3 |
–14,2 |
Курсовой проект “Теплоснабжение”. |
2 |
1.4. Удельные потери тепла зданиями.
to |
Этажность. |
|
1 ÷ 2 |
3 ÷ 4 |
|
–50 °С. |
qo=255 В/м2 |
qo=169 В/м2 |
1.5 Нормы расхода горячей воды.
Жилой дом: 120 л/сут.
Школы, лицеи: 8 л/сут.
Детский сад: 30 л/сут.
Столовая: 6 л/сут.
2.
2.1. Расход тепла на отопление жилых и общественных зданий <Вт>:
Qo max=qoA(1+K1)
qo – укрупнённый показатель максимального теплового потока на отопление жилых и общественных зданий на 1м2 площади (прил. 2 СНиП “Тепловые сети”) <Вт> .
A – общая площадь здания <м2>.
К1 – коэффициент учитывающий тепловой поток на отопление общественных зданий (К1=0,25 – если данных нет).
2.2. Расход тепла на вентиляцию общественных зданий <Вт>:
Qv max=K1K2qoA
К2 – коэффициент учитывающий тепловой поток на вентиляцию общественных зданий (К2=0,6).
2.3. Средний тепловой поток на горячее водоснабжение жилых и общественных зданий <Bт>:
m – число потребителей.
а – нормы расхода воды на горячее водоснабжение на 1-го человека в сутки.
b – нормы расхода воды на горячие водоснабжение в общественных зданиях при температуре наружного воздуха –55 °С (принимается равным 25л в сутки на одного человека).
tx – температура холодной воды в отопительный период.
с – теплоёмкость воды.
Курсовой проект “Теплоснабжение”. |
3 |
2.4. Максимальный тепловой поток на горячее водоснабжение жилых и общественных зданий <Bт>:
Qh max=2,4Qh m
2.5. Средний тепловой поток на отопление <Bт>:
ti – средняя температура внутреннего воздуха отапливаемых помещений (при отсутствии данных в жилых принимается 18 °С, в производственных 16 °С).
tom – средняя температура наружного воздуха за период со среднесуточной температурой 8 °С и ниже.
To – расчетная температура наружного воздуха для проектирования отопления.
2.6. Средний тепловой поток на вентиляцию <Bт>:
2.7. Средний тепловой поток на отопление <Bт>:
– температура холодной водопроводной воды в неотопительный период (+15°С).
tc – температура холодной водопроводной воды в отопительный период (+5 °С).
–коэффициент, учитывающий изменение среднего расхода воды на ГВС в неотопительный период по отношению к отопительному периоду:
0,8 – для жилищно–коммунального сектора,
1 – для предприятий.
2.8. Годовой расход тепла на отопление жилых и общественных зданий < кДж >:
Qoy=86,4Qo mno
2.9. Годовой расход тепла на вентиляцию общественных зданий < кДж >:
2.10. Годовой расход тепла на ГВ жилых и общественных зданий < кДж >:
no – продолжительность отопительного периода соответствующее периоду со среднесуточной температурой наружного воздуха +8 °С и ниже.
Z – усреднённое за отопительный период число работы системы вентиляции общественных зданий в течении суток (16 часов).
nh y – расчётное число суток в году работы системы ГВ (350 суток).
Курсовой проект “Теплоснабжение”. |
4 |
Все расчёты сведены в таблицу №1.
Таблица №1 “Тепловые нагрузки района”: |
||||||||||
Наименование здания. |
Тепловая нагрузка. |
|||||||||
Qo max, Вт. |
Qv max, Вт. |
Qh m, Вт. |
Qh max, Вт. |
Qo m, Вт. |
Qv m, Вт. |
, Вт. |
Qoy,ГДж. |
Qvy, ГДж. |
Qhy, ГДж. |
|
1. Жилой дом. |
63750 |
7650 |
––––– |
––––– |
34193 |
4103 |
––––– |
939,5 |
75,15 |
––––– |
2. Жилой дом. |
122400 |
––––– |
12600 |
30340 |
65651 |
––––– |
8064 |
1803,7 |
––––– |
368,48 |
3. Лицей. |
194350 |
23322 |
18667 |
44801 |
101426 |
12171 |
14934 |
2786,7 |
223 |
554,17 |
5. Жилой дом. |
153000 |
––––– |
15750 |
37800 |
82064 |
––––– |
10080 |
2254,7 |
––––– |
460,6 |
6. Жилой дом. |
76500 |
––––– |
8050 |
19320 |
41032 |
––––– |
12365 |
1127,4 |
––––– |
255,5 |
7. Гараж. |
12750 |
7650 |
––––– |
––––– |
6023 |
3614 |
––––– |
165,5 |
66,2 |
––––– |
9. Школа. |
190125 |
22815 |
16334 |
39202 |
99222 |
11942 |
13067 |
2726,2 |
218,8 |
485 |
11. Школа |
395125 |
43095 |
35000 |
84000 |
187419 |
22490 |
28000 |
5149,4 |
411,95 |
1039 |
13. Жилой дом. |
67600 |
––––– |
10500 |
25200 |
36258 |
––––– |
6720 |
996,2 |
––––– |
307,07 |
15. Жилой дом. |
67600 |
––––– |
10500 |
25200 |
36258 |
––––– |
6720 |
996,2 |
––––– |
307,07 |
сумма: |
1343200 |
104532 |
127401 |
305763 |
689546 |
54320 |
99950 |
18945,5 |
995,1 |
3776,9 |
Курсовой проект “Теплоснабжение”. |
5 |
3. График расхода тепла по продолжительности стояния температур наружного воздуха.
Для определения годового расхода тепла, планирования в течение года загрузки оборудования котельной и составления графика ремонта используют график расхода тепла по продолжительности стояния температур наружного воздуха.
(3.1)
(3.2)
tн – температура наружного воздуха (от +8 и ниже).
Все расчёты для построения графика сведены в таблицу №2.
Таблица №2: |
||||
Tн, °С. |
Qo m, Вт. |
Qv m, Вт. |
Qh m, Вт. |
Qoбщ. m, Вт. |
+8 |
176852 |
12577 |
127401 |
316830 |
+5 |
237406 |
17504 |
382311 |
|
0 |
338330 |
25713 |
491444 |
|
–5 |
439254 |
33924 |
600579 |
|
–10 |
540179 |
42135 |
709715 |
|
–15 |
641102 |
50344 |
818847 |
|
–20 |
742026 |
58555 |
927982 |
|
–25 |
842950 |
66764 |
1037115 |
|
–30 |
943874 |
74976 |
1146251 |
|
–35 |
1043698 |
83185 |
1254284 |
|
–40 |
1145721 |
91396 |
1364518 |
|
–45 |
1246647 |
92634 |
1466682 |
|
–48 |
1307200 |
104532 |
1539133 |
Курсовой проект “Теплоснабжение”. |
6 |
4. График центрального качественного регулирования отпуска теплоты.
Регулирование отпуска тепла в закрытых системах теплоснабжения.
В водяных тепловых станциях принимают центральное качественное регулирование отпуска теплоты по нагрузке отопления или по совмещённой нагрузке отопления и горячего водоснабжения.
Центральное качественное регулирование заключается в регулировании отпуска теплоты путём изменения температуры теплоносителя на входе в прибор, при сохранении постоянным количество теплоносителя подаваемого в регулирующую установку.
4.1. Если тепловая нагрузка на жилищно-коммунальные нужды составляет менее 65% от суммарной тепловой нагрузки, а также при отношении:
–– регулирование отпуска теплоты принимают по нагрузке на отопление.
При этом в тепловой сети поддерживается отопительно-бытовой температурный график.
Построение графика центрального качественного регулирования по отопительной нагрузке основано на определении зависимости температуры сетевой воды, подающей и обратной магистрали, от температуры наружного воздуха.
Для зависимых схем присоединения отопительных установок к отопительным сетям температуру в подающей (to по следующим формулам:
(4.1.1.)
(4.1.2.)
ti – средняя температура воздуха отапливаемых зданий.
∆t – температурный напор нагреваемого прибора:
(4.1.3.)
to.
to – расчётная температура наружного воздуха для проектирования отопления.
to.
(4.1.4.)
to).
(4.1.5.)
Курсовой проект “Теплоснабжение”. |
8 |
При регулировании по отопительной нагрузке, водоподогреватели горячего водоснабжения присоединяются к тепловым сетям в зависимости от отношения максимальной тепловой нагрузки на горячее водоснабжение (Qh max) к максимальной тепловой нагрузки на отопление (Qо max) типа регулятора, по следующим схемам:
– с установкой регулятора расхода по двухступенчатой смешанной схеме.
При таком же отношении с электронным регулятором расхода по двухступенчатой смешанной схеме с ограничением максимального расхода воды на ввод.
При остальных отношениях по параллельной схеме.
4.2. Если в системе теплоснабжения нагрузка на жилищно-коммунальные нужды составляет, более 65% от суммарной тепловой нагрузки принимают центральное качественное регулирование отпуска теплоты по совмещённой нагрузке горячего водоснабжения и отопления.
Применение данного метода регулирования позволяет рассчитать магистральные теплопроводы по суммарному расходу воды на отопление и на вентиляцию, не учитывая расхода на горячее водоснабжение. Для удовлетворения нагрузки на горячее водоснабжение температура воды в подающем трубопроводе принимается выше, чем по отопительному графику и большинство абонентов системы отопления и горячего водоснабжения должны присоединятся к тепловой сети по принципу связанной подачи теплоты:
1) – с установкой регулятора расхода по последовательной двухступенчатой схеме.
2) При том же отношении с электронным регулятором расхода по двухступенчатой смешанной схеме с ограничением максимального расхода воды на ввод.
При этом способе регулирования отпуска теплоты в тепловой сети поддерживается повышенный отопительно-бытовой температурный график, который строится на основании отопительно-бытового температурного графика.
Расчёт повышенного температурного графика заключается в определении перепада температур сетевой воды в подогревателях верхней (δ1) и нижней (δ2) ступени при различных температурах наружного воздуха (tн) и балансовой нагрузки горячего водоснабжения ( X·Qh m ; (4.2.1.)
X – балансовый коэффициент учитывающий неравномерность расхода теплоты на горячие водоснабжение в течении суток (для закрытых систем теплоснабжения X=1,2).
Суммарный перепад температур сетевой воды в подогревателях верхней и нижней ступени в течение всего отопительного периода постоянен и определяется:
(4.2.2.)
Задавая величину недогрева водопроводной воды до температуры греющей воды в нижней ступени подогревателя (∆t = 5 ÷ 10 °С) определяют температуру нагреваемой воды после первой ступени подогревателя (t') при температуре наружного воздуха, соответствующей точки излома графика (t'н): t' = t'н; (4.2.3.)
Штрих обозначает, что значение взяты при температуре точки излома графика.
Курсовой проект “Теплоснабжение”. |
9 |
Перепад температур сетевой воды в нижней ступени подогревателя (δ2) при различных температурах наружного воздуха определяется:
при t'н: δ'2 = δ·(t' – tc)/(th – tc); (4.2.4.)
при to: δ2 = δ'·(τ2 – tc)/(τ'2 – tc); (4.2.5.)
th – температура воды поступающая в систему горячего водоснабжения.
tc – температура холодной водопроводной воды в отопительный период.
Зная δ2 и δ'2 находим температуру сетевой воды от обратной магистрали по повышенному температурному графику:
τ2П = τ2 – δ2; (4.2.6.)
τ'2П = τ'2 – δ'2; (4.2.7.)
Перепад температур сетевой воды в верхней ступени подогревателя при t'н и tо:
δ'1 = δ – δ'2; (4.2.8.)
δ1 = δ – δ2; (4.2.9.)
Температуры сетевой воды подающей магистрали тепловой сети для повышенного температурного графика определяются по следующим формулам:
τ1П = τ1 – δ1; (4.2.10.)
τ'1П = τ'1 – δ'1; (4.2.11.)
Расчёт графика центрального качественного регулирования отпуска теплоты.
– регулирование отпуска теплоты принимают по нагрузке на отопление. При этом в тепловой сети поддерживается отопительно-бытовой температурный график (формулы 4.1.)
Данные для расчёта графика: τ1 = 130 °С
τ2 = 70 °С
ti = 18 °С
to = – 48 °С
τэ = 95 °С
Минимальную температуру сетевой воды в подающем магистрали принимается равной 70 °С (на уровне 70 °С график срезается).
Курсовой проект “Теплоснабжение”. |
10 |
5. Гидравлический расчёт тепловых сетей.
5.1. Задачи гидравлического расчёта.
В задачу гидравлического расчёта входят:
1.
2.
3.
4.
Результаты гидравлического расчёта дают исходный материал для решения следующих задач: 1. Определение капиталовложений, расхода металла и основного объёма работ по сооружению тепловой сети,
2. Установление характеристик циркуляционных и подпиточных насосов, и. их размещение,
3. Выяснение условия работы тепловой сети и абонентских систем и выбора схем присоединения абонентских установок,
4. Выбор авторегулятора для тепловой сети и абонентских вводов,
5. Разработка режимов эксплуатации.
5.2. Основные расчётные зависимости.
При гидравлическом расчёте тепловых сетей определяют потери давления на участках трубопровода для последующей разработки гидравлических режимов и выявление располагаемых напоров на тепловых пунктах потребителей.
Гидравлический расчёт производится на суммарный расчётный расход сетевой воды, складывающийся из расчётных расходов на отопление, вентиляцию и на горячие водоснабжение.
Расчётные расходы воды определяют <кг/ч>:
a) максимальный расход воды на отопление:
(5.2.1.)
б) максимальный расход воды на вентиляцию:
(5.2.2.)
в) на горячие водоснабжение в открытых системах теплоснабжения:
(5.2.3.)
(5.2.4.)
г) на горячие водоснабжение в закрытых системах теплоснабжения:
– при параллельной схеме присоединения водоподогревателей:
(5.2.5.)
(5.2.6.)
Курсовой проект “Теплоснабжение”. |
12 |
–
(5.2.7.)
(5.2.8.)
τ1 – температура воды в подающем трубопроводе тепловой сети при расчётной температуре наружного воздуха,
τ2 – температура воды в обратном трубопроводе тепловой сети при расчётной температуре наружного воздуха,
th – температура воды поступающей в систему горячего водоснабжения потребителей,
τ'1 – температура воды в подающем трубопроводе тепловой сети в точке излома графика,
τ'2 – температура воды в обратном трубопроводе тепловой сети после системы отопления здания в точке излома графика,
τ'3 – температура воды после параллельно включённого водоподогревателя горячего водоснабжения в точке излома графика температур воды (рекомендуется 30 °С),
t| – температура воды после первой ступени подогревателя при двухступенчатой схеме водоподогревателя.
Суммарный расчётный расход сетевой воды в двухтрубных тепловых, сетях в закрытых и открытых системах теплоснабжения при качественном регулировании отпуска теплоты определяется:
Gd = Go max + Gv max + k3 · Gi h m ; (5.2.9.)
k3 – коэффициент учитывающий долю среднего расхода воды на горячие водоснабжение при регулировании по нагрузке отопления (таблица 2 СНиП “Тепловые сети”).
Перед гидравлическим расчётом составляют расчётную схему тепловых сетей с нанесением на ней длин, местных сопротивлений и расчётных расходов теплоносителя по всем участкам сети.
5.3 Порядок гидравлического расчёта теплопроводов:
1.
Разбивают тепловую сеть на расчётные участки, определяют расчётные расходы и измеряют по Ген. плану длину участка.
2. h) (на главной магистрали до наиболее удалённого потребителя, с учётом дополнительного подключения абонентов h принимают не более 8 мм. вод. ст./м, на ответвлениях 30 мм. вод. ст/м), исходя из расходов теплоносителя на участках по таблицам и номограммам находят диаметры теплопроводов, действительные потери давления на трение и скорость движения теплоносителя, которая должна быть не более 25 м/сек.
Следует отметить, что для районов вечно мерзлотных грунтов минимальный диаметр труб, не зависимо от расхода воды и параметров теплоносителя должен приниматься 50 мм.
Курсовой проект “Теплоснабжение”. |
13 |
3.
4. H = h·(L + Lэкв) [мм. вод. ст.]
Эквивалентной длиной (Lэкв) принято называть такую условную длину прямолинейного участка, на котором падения давления на трение равно падению вызываемого местными сопротивлениями.
При отсутствии данных о характере и количестве местных сопротивлений эквивалентная длина определяется: Lэкв = a1·L
a1 – коэффициент учитывающий долю потерь давления в местных сопротивлениях по отношению падений давления на трение (по СНиП “Тепловые сети” приложения): для Ду до 150 мм. a1 = 0,3
для Ду до 200 мм. a1 = 0,4
5.
6.
Схема присоединения теплообменников горячего водоснабжения выбирается по следующему соотношению:
– двухступенчатая смешанная схема,
При другом отношении – одноступенчатая параллельная схема.
Гидравлический расчёт сведён в таблицу №3.
Курсовой проект “Теплоснабжение”. |
14 |
Таблица №3 Гидравлический расчёт: |
|||||||||||
№ уч. |
Q, ккал/ч |
G, т/ч |
Диаметр |
Длина |
U, м/с |
Потери напора |
|||||
Ду |
Дн х S |
L, м |
Lэкв |
L +Lэкв |
h, мм. вод. ст. |
H, мм. вод. ст. |
Hc, мм. вод. ст. |
||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
1 |
17544 |
0,291 |
50 |
57 х 3,5 |
34 |
10,2 |
44,2 |
0,12 |
0,53 |
23,43 |
23,43 |
2 |
316909 |
4,05 |
65 |
76 х 3,5 |
68 |
20,4 |
88,4 |
0,32 |
2,58 |
228,07 |
251,5 |
3 |
909222 |
15,75 |
100 |
108 х 4 |
14 |
4,2 |
58,8 |
0,59 |
5,17 |
304 |
555,5 |
4 |
1101896 |
19,07 |
100 |
108 х 4 |
22 |
6,6 |
28,6 |
0,7 |
7,3 |
209 |
764,5 |
5 |
1345792 |
23,36 |
125 |
133 х 4 |
90 |
27 |
117 |
0,57 |
3,57 |
417,7 |
1182,2 |
6 |
1428197 |
24,8 |
125 |
133 х 4 |
26 |
7,8 |
33,8 |
0,59 |
3,88 |
131,2 |
1313,4 |
7 |
1508005 |
26,23 |
125 |
133 х 4 |
17 |
5,1 |
22,1 |
0,64 |
4,52 |
99,9 |
1413,3 |
8 |
216842 |
3,75 |
50 |
57 х 3,5 |
3 |
0,9 |
3,9 |
0,27 |
2,51 |
9,79 |
––––– |
9 |
449109 |
7,79 |
65 |
76 х 3,5 |
26 |
7,8 |
33,8 |
0,63 |
9,3 |
314,34 |
––––– |
10 |
674836 |
11,71 |
80 |
108 х 4 |
15 |
4,5 |
19,5 |
0,67 |
8,9 |
173,55 |
487,9 |
11 |
225727 |
3,92 |
50 |
57 х 3,5 |
5 |
1,5 |
6,5 |
0,59 |
12,9 |
83,85 |
––––– |
12 |
61404 |
1,02 |
50 |
57 х 3,5 |
10 |
3 |
13 |
0,15 |
0,9 |
11,7 |
––––– |
13 |
192674 |
3,32 |
50 |
57 х 3,5 |
20 |
6 |
26 |
0,5 |
9,34 |
242,84 |
254,54 |
14 |
131270 |
2,3 |
50 |
57 х 3,5 |
3 |
0,9 |
3,9 |
0,34 |
4,27 |
16,65 |
––––– |
15 |
79808 |
1,42 |
50 |
57 х 3,5 |
92 |
27,6 |
119,6 |
0,21 |
1,7 |
203,32 |
––––– |
16 |
243896 |
4,29 |
65 |
76 х 3,5 |
50 |
15 |
65 |
0,34 |
2,81 |
182,65 |
385,97 |
17 |
164088 |
2,87 |
50 |
57 х 3,5 |
2 |
0,6 |
2,6 |
0,43 |
6,79 |
17,65 |
––––– |
18 |
79808 |
1,42 |
50 |
57 х 3,5 |
83 |
24,9 |
107,9 |
0,21 |
1,7 |
183,43 |
––––– |
19 |
82405 |
1,44 |
50 |
57 х 3,5 |
21 |
6,3 |
27,3 |
0,21 |
1,7 |
46,41 |
––––– |
Курсовой проект “Теплоснабжение”. |
15 |
6. Разработка монтажной схемы и выбор строительных конструкций тепловой сети.
Тепловая сеть представляет собой систему прочно и плотно соединёнными между собой участков теплопроводов, по которым тепло с помощью теплоносителя транспортируется от источников тепла к тепловым потребителям.
Направление теплопроводов выбирается по тепловой карте района с учётом геодезической съёмки, планов существующих и намечаемых наземных и подземных сооружений, состояния грунтовых вод.
При прокладке стремятся к: – прокладке магистральной трассы по району наиболее плотной тепловой нагрузки,
–
–
Теплопроводы прокладываются прямолинейно, параллельно оси проезда или линии застройки. Нежелательно перебрасывать трассу магистрального теплопровода с одной стороны проезда на другую.
При выборе трассы следует руководствоваться следующим:
–
–
–
Для обеспечения опорожнения и дренажа теплопроводы прокладываются с уклоном к горизонту. Минимальная величина уклона водяных сетей принимается равной 0,002, где направление уклона безразлично.
По трассе тепловых сетей строится продольный профиль, на который наносят:
–
–
–
Теплопровод состоит из трёх основных элементов:
–
–
–
7. Теплоизоляционная конструкция.
Теплоизоляционная конструкция состоит из трёх основных слоёв:
1.
2.
3.
Противокоррозионный слой предназначен для защиты теплопровода от наружной коррозии.
Теплоизоляционный слой устраивается на трубопроводах, арматуре, фланцевых соединениях и для следующих целей:
1. уменьшение потерь тепла при его транспортировании, что снижает установочную мощность источников тепла,
2. уменьшения падения температуры теплоносителя, что снижает расход теплоносителя,
Курсовой проект “Теплоснабжение”. |
16 |
3. понижения температуры на поверхности теплопровода и воздуха в местах обслуживания.
Покровный слой предназначен для защиты тепловой изоляции от атмосферных осадков.
7.1. Расчёт тепловой изоляции.
В качестве основного теплоизоляционного материала принимаем минераловатную плиту.
При проектировании тепловых сетей толщину изоляции определяют исходя из:
–
–
–
–
Толщина тепловой изоляции определяется по формуле:
(7.1.1.)
λк – коэффициент теплопроводности основного слоя (для мин. ваты 0,07 Вт/м2 °С),
de – наружный диаметр теплопровода <мм>,
Rиз – термическое сопротивление основного слоя изоляции < м2°С/Вт>:
; (7.1.2)
τm – расчётная среднегодовая температура теплоносителя (средняя за отопительный период):
; (7.1.3.)
τm1 – средняя температура теплоносителя по месяцам определяемая по графику центрального качественного регулирования в зависимости от среднемесячных температур наружного воздуха,
n1 – количество часов в году по месяцам,
te – расчётная температура окружающей среды (средняя за отопительный период).
qe – норма потерь теплоты <Вт/м> (СНиП “Тепловая изоляция” приложение 4–8).
k1 – коэффициент учитывающий изменение стоимости теплоты и теплоизоляционной конструкции в зависимости от районо строительства и способа прокладки (k1 = 088).
Расчёт толщины минераловатной плиты сведён в таблицу № 4:
Курсовой проект “Теплоснабжение”. |
17 |
Таблица № 4 “Расчёт тепловой изоляции”:
Трубопровод. |
τm, °С |
Ду |
Rиз, м2°С/Вт. |
δк, мм. |
Подающий: |
87,63 |
50 |
4,34 |
163,7 |
65 |
3,76 |
160,6 |
||
80 |
3,46 |
159,3 |
||
100 |
3,12 |
159 |
||
125 |
2,75 |
156,4 |
||
Обратный: |
54,92 |
50 |
4,4 |
168 |
65 |
3,93 |
176 |
||
80 |
3,56 |
204 |
||
100 |
3,12 |
159 |
||
125 |
2,77 |
158,4 |
7.2 Определение потерь тепла в наружных тепловых сетях.
Qпот = Σ (β·qн ·L)·a
β – коэффициент по потери тепла арматурой и компенсаторами (1,25 для наружной прокладки),
qн – потери тепла теплопроводами (ккал/ч·м),
L – протяжённость теплопровода (м),
а – поправочный коэффициент, зависит от средней годовой температуры воздуха:
–20 °С: 1,11 для Т1. –10 °С: 1
1,07 для Т2. 1
–18 °С: 1,07 –8 °С: 0,99
1,04 0,99
–15 °С: 1,04 –5 °С: 0,98
1,02 0,98
–12 °С: 1,01
1,01
Расчёт потерь тепла сведён в таблицу № 5:
Трубопровод. |
Дн |
Qпот, ккал/ч. |
Т1 |
57 |
9555 |
76 |
5580 |
|
89 |
656 |
|
108 |
1755 |
|
133 |
7149 |
|
Т2 |
57 |
7166 |
76 |
5040 |
|
89 |
488 |
|
108 |
1260 |
|
133 |
5320 |
|
ΣQпот·а = 45234 ккал/ч. |
Курсовой проект “Теплоснабжение”. |
18 |
Курсовой проект “Теплоснабжение”. |
19 |
Наим. Изоляц. объекта. |
Дн |
τmax, °С |
L, м |
Окрашиваемая поверхность. |
Основной изоляционный слой |
Покровный слой |
|||||||
Материал |
Толщина |
Объём, м3 |
Материал |
Толщина, мм. |
Поверхность |
||||||||
Ед., м2 |
Общая, м2 |
Ед. |
Общ. |
Ед. |
Общ., м2 |
||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
Т1 |
57 |
130 |
273 |
0,179 |
48,9 |
Маты минераловатные. |
163,7 |
0,0293 |
8 |
Сталь листовая оцинкованная |
0,7 |
1,2 |
329,7 |
76 |
144 |
0,239 |
34,4 |
160,6 |
0,0383 |
5,5 |
1,25 |
179,7 |
|||||
89 |
15 |
0,28 |
4,2 |
159,3 |
0,045 |
0,6 |
1,28 |
19,2 |
|||||
108 |
36 |
0,34 |
12,24 |
159 |
0,054 |
1,94 |
1,34 |
48,2 |
|||||
133 |
133 |
0,418 |
55,6 |
156,4 |
0,065 |
8,7 |
1,4 |
186,3 |
|||||
Т2 |
57 |
70 |
273 |
0,179 |
48,9 |
168 |
0,03 |
8,2 |
1,24 |
337,1 |
|||
76 |
144 |
0,239 |
34,4 |
176 |
0,042 |
6,1 |
1,35 |
193,6 |
|||||
89 |
15 |
0,28 |
4,2 |
204 |
0,057 |
0,86 |
1,56 |
23,4 |
|||||
108 |
36 |
0,34 |
12,24 |
159 |
0,053 |
1,9 |
1,34 |
48,2 |
|||||
133 |
133 |
0,418 |
55,6 |
158,4 |
0,066 |
8,8 |
1,31 |
188 |
7.3 Ведомость изоляционной конструкции:
5) π·Дн
6) (5)·L
9) π·Дн·δиз
10) (9)·L
13) 2π·(Дн/2 + δиз)
14) (13)·L
8. Расчёт опор.
8.1. Расстояние между неподвижными опорами:
Ду |
L, мм. |
Ø 50 |
60 |
Ø 65 |
70 |
Ø 80 |
80 |
Ø 100 |
80 |
Ø 125 |
90 |
Ø 150 ÷ 175 |
100 |
Ø 200 |
120 |
8.2. Расстояние между подвижными опорами:
Дн х S |
L1, мм. |
Ø 57 х 3,5 |
5,4 |
Ø 76 х 3,5 |
6,2 |
Ø 89 х 3,5 |
6,8 |
Ø 108 х 4 |
8,3 |
Ø 133 х 4 |
8,4 |
Ø 159 х 4,5 |
9,3 |
Ø 194 х 5 |
10,2 |
Ø 219 х 6 |
11,6 |
Количество подвижных опор рассчитывается по формуле:
n = L·2:L1
L – расстояние между неподвижными опорами по монтажной схеме, или общая длина, данного диаметра, теплопровода,
L1 – расстояние между подвижными опорами.
Таблица № 6 “Количество подв. опор”: |
|
Ду |
n |
Ø 50 |
101 |
Ø 65 |
46 |
Ø 80 |
5 |
Ø 100 |
9 |
Ø 125 |
32 |
∑ |
193 подв. опор. |
Расчёт количества подвижных опор сведён в таблицу № 6.
Курсовой проект “Теплоснабжение”. |
20 |
9. Водоподогреватели горячего водоснабжения.
К расчёту принимаем водоводяные кожухотрубчатые подогреватели.
В кожухотрубчатых подогревателях основным элементом является цилиндрический корпус и пучок гладких трубок размещаемых внутри корпуса. Один из теплоносителей протекает внутри трубок, другой в межтрубном пространстве – такие теплообменники называются скоростными.
Скоростные водоводяные подогреватели, у которых греющая и нагреваемая вода движутся навстречу, называются противоточными. Противоток эффективнее прямотока, т.к. обеспечивает большую среднюю разность температур и позволяет нагревать воду до более высокой температуры.
В подогревателях предназначенных для горячего водоснабжения греющую воду направляют в межтрубное пространство, нагреваемую в трубки. В подогреватели для системы отопления греющая вода направляется в трубки, а нагреваемая в межтрубное пространство.
Основным элементом подогревателя является корпус из стальной бесшовной трубы. Внутри корпуса расположены трубки из латуни Дв 16 х 1 мм., теплопроводность составляет 135 Вт/м °С, корпус теплообменника имеет длину 3 – 4 м, Ø57 – 530 мм., число трубок 4 – 450, Рр = 1 Мпа.
Тепловой и гидравлический расчёт водоподогревательных установок.
Расчет сводится к определению: – расчётной поверхности нагрева,
–
–
Расчёт подогревателя системы горячего водоснабжения при любых схемах подключения к тепловым сетям производится для самого неблагоприятного режима, соответствующего точке излома температурного графика.
Для скоростных секционных водоподогревателей следует принимать противоточную схему потоков теплоносителя, при этом греющая вода должна поступать в межтрубное пространство.
– двухступенчатая смешанная схема,
При другом отношении – одноступенчатая параллельная схема.
9.1 Расчёт водоподогревателя при двухступенчатой смешанной схеме.
1. В зимний период расход сетевой воды вычисляется по формуле:
– на отопление <кг/ч>:
(9.1.1.)
–
(9.1.2.)
Курсовой проект “Теплоснабжение”. |
21 |
В этих формулах Qo max и Qh max в кВт.
2. Расчётный расход на абонентский ввод <кг/ч>:
Gаб. max = Go max + Gh max ; (9.1.3.)
3. Расход нагреваемой воды для горячего водоснабжения <кг/ч>:
; (9.1.4.)
4. Температура нагреваемой воды на выходе из подогревателя первой ступени <°С>: ; (9.1.5.)
5. Теплопроизводительность подогревателя Ⅰ и Ⅱ ступени <кВт>:
; (9.1.6.)
; (9.1.7.)
6. Температура сетевой воды на выходе из подогревателя Ⅰ ступени:
; (9.1.8.)
7. Средне логарифмические разности температур между греющим и нагреваемым теплоносителями в подогревателях Ⅰ и Ⅱ ступени:
; (9.1.9.)
; (9.1.10.)
8. Средние температуры сетевой и нагреваемой воды в подогревателях Ⅰ и Ⅱ ступени: ; (9.1.11.)
; (9.1.12.)
; (9.1.13.)
; (9.1.14.)
9. Задавшись скоростью нагреваемой воды Uтр=1 м/с, определяем требуемую площадь живого сечения трубного пространства подогревателей <м2>:
(9.1.15.)
По вычисленной fтр. подбираем вид подогревателя и выписываем его характеристики.
Курсовой проект “Теплоснабжение”. |
22 |
10. Эквивалентный диаметр межтрубного пространства:
(9.1.16.)
Дi – внутренний диаметр теплообменного аппарата (корпуса).
de – наружный диаметр трубок.
11. Действительная скорость нагреваемой воды в трубках подогревателей <м/с>:
(9.1.17.)
fтр. – площадь межтрубного пространства выбранного подогревателя.
12. Скорость сетевой воды в межтрубном пространстве в подогревателях Ⅰ и Ⅱ ступени <м/с>:
(9.1.18.)
(9.1.19.)
13. Коэффициент теплоотдачи от сетевой воды к стенкам трубок в подогревателях Ⅰ и Ⅱ ступени <Вт/м2°С>:
(9.1.20.)
(9.1.21.)
14. Коэффициент теплопередачи от стенок трубок к нагреваемой воде в подогревателях Ⅰ и Ⅱ ступени:
(9.1.22.)
(9.1.23.)
15. Коэффициент теплоотдачи для подогревателей Ⅰ и Ⅱ ступени <Вт/м2°С>:
(9.1.24.)
(9.1.25.)
16. Требуемая площадь поверхности нагрева подогревателей Ⅰ и Ⅱ ступени <м2>:
(9.1.26.)
(9.1.27.)
Курсовой проект “Теплоснабжение”. |
23 |
17. Количество секций подогревателя Ⅰ и Ⅱ ступени:
(9.1.28.)
(9.1.29.)
18. Потери давления в подогревателях Ⅰ и Ⅱ ступени <кПа>:
(9.1.30.)
(9.1.31.)
(9.1.32.)
(9.1.33.)
В летний период расчётные параметры сетевой воды составляют:
τ|1 = 70 ºC,
τ|3 = 30 ºC,
= 15 ºC.
19. Расход теплоты на горячие водоснабжение <кВт>:
(9.1.34.)
20. Расход нагреваемой воды <кг/ч>:
(9.1.35.)
(9.1.36.)
21. Средне логарифмическая разность температур теплоносителей:
(9.1.37.)
22. Средние температуры нагреваемой и сетевой воды в подогревателе:
(9.1.38.)
(9.1.39.)
23. Скорость сетевой воды и нагреваемой в водоподогревателях <м/с>:
(9.1.40.)
(9.1.41.)
24. Коэффициент теплоотдачи:
(9.1.42.)
Курсовой проект “Теплоснабжение”. |
24 |
(9.1.43.)
25. Коэффициент теплопередачи:
(9.1.44.)
26. Поверхность нагрева подогревателей в летний период <м2>:
(9.1.45.)
27. Количество секций подогревателя:
(9.1.46.)
28. Потери давления в летний период <кПа>:
(9.1.47.)
(9.1.48.)
9.2 Расчёт водоподогревателя при одноступенчатой параллельной схеме.
1. Расход греющей воды <т/ч>: (9.2.1)
2. Расход нагреваемой воды <т/ч>: (9.2.2.)
3. задавшись ориентировочно типом и номером подогревателя с диаметром корпуса Dв находим: – скорость воды в межтрубном пространстве <м/с>:
(9.2.3.)
– скорость нагреваемой воды в трубах <м/с>:
(9.2.4.)
4. Средняя температура греющей воды <°С >: Т = 0,5 · (Т1 – Т2) ; (9.2.5.)
5. Средняя температура нагреваемой воды <°С >: t = 0,5 · (t1 – t2) ; (9.2.6.)
6. Коэффициент теплоотдачи от греющей воды, проходящей в межтрубном пространстве, к стенкам трубок <ккал/м2ч°С >:
(9.2.7.)
(9.2.8.) – эквивалентный диаметр межтрубного пространства <м>:
7. Коэффициент теплопередачи от стенок трубок к нагреваемой воде, проходящей по трубкам <ккал/м2ч°С >:
(9.2.9.)
Курсовой проект “Теплоснабжение”. |
25 |
8. Коэффициент теплопередачи <ккал/м2ч°С >:
(9.2.10.)
При латунных трубках диаметром 16/14 мм значение δст/λст = 0,000011
9. Средне логарифмическая разность температур в подогревателе <°С >:
(9.2.11.)
10. Площадь поверхности нагрева подогревателя <м2>:
(9.2.12.)
μ – коэффициент, учитывающий накипь и загрязнение трубок:
11. Активная длина секций подогревателя <м2>:
(9.2.13.)
dср = 0,5·(dн – dв) ; (9.2.14.)
12. Число секций подогревателя при длине секций 4 м:
(9.2.15.)
13. Потери давления на одну секцию 4 м определяется по формулам <кгс/см2>:
ΔPтр = 530; (9.2.16.)
ΔPтр = 1100; (9.2.17.)
В этих формулах: Q – расчётный расход тепла в ккал/ч,
Т1 – температура греющей воды на входе в подогреватель в °С,
Т2 – температура греющей воды на выходе из подогревателя в °С,
t1 – температура нагреваемой (местной) воды на выходе из подогревателя в °С (65 °С),
t2 – температура нагреваемой воды на входе в подогреватель в °С,
Dв – внутренний диаметр корпуса подогревателя в м,
dн и dв – наружный и внутренний диаметр трубок в м.
Расчет водоподогревателя:
– принимаем двухступенчатую смешанную схему присоединения теплообменников горячего водоснабжения.
Исходные данные для расчёта: Qo max = 1343,2 кВт, Qh max = 305,763 кВт, , , τ1 = 130 °С, τ2 = 70 °С, th = 60 °С, tc = 5 °С.
Курсовой проект “Теплоснабжение”. |
26 |
Расчёт водоподогревателей сведён в таблицу № 7.
Таблица № 7 “Расчёт водоподогревателей ГВ”: |
|||||||
№ |
Обозначение |
Ед. измер. |
Получ. значен. |
№ |
Обозначение |
Ед. измер. |
Получ. значен. |
1 |
Go max |
кг/ч |
19234,4 |
20 |
Кг/ч |
3821,3 |
|
G3 h max |
кг/ч |
5557,3 |
кг/ч |
4299 |
|||
2 |
Gаб max |
кг/ч |
24791,7 |
21 |
°С |
12,3 |
|
3 |
кг/ч |
4776,5 |
22 |
|
°С |
37,5 |
|
4 |
t| |
°С |
39 |
|
°С |
50 |
|
5 |
кВт |
116,75 |
23 |
Uтр. |
м/с |
0,574 |
|
кВт |
189,013 |
Uм. тр. |
м/с |
0,416 |
|||
6 |
°С |
37,5 |
24 |
|
Вт/м2°С |
3554,6 |
|
7 |
Δtm,І |
°С |
14,7 |
|
Вт/м2°С |
3030,5 |
|
Δtm,ІІ |
°С |
7,2 |
25 |
Кл |
Вт/м2°С |
1602 |
|
8 |
τm,І |
°С |
40,75 |
26 |
Fs |
м2 |
12,7 |
tm,І |
°С |
22 |
27 |
n |
шт. |
6 |
|
τm,ІІ |
°С |
57 |
28 |
кПа |
10,48 |
||
tm,ІІ |
°С |
49,5 |
кПа |
11,42 |
|||
9 |
fтр. |
м2 |
0,00133 |
|
|||
10 |
dee |
м2 |
0,01333 |
|
|||
11 |
Uтр |
м/с |
0,72 |
|
|||
12 |
|
м/с |
2,4 |
|
|||
|
м/с |
0,54 |
|
||||
13 |
Вт/м2°С |
11550,5 |
|
||||
Вт/м2°С |
3902,2 |
|
|||||
14 |
Вт/м2°С |
3741,7 |
|
||||
Вт/м2°С |
4638,9 |
|
|||||
15 |
КІ |
Вт/м2°С |
2726 |
|
|||
КІІ |
Вт/м2°С |
2062,6 |
|
||||
16 |
FІ |
м2 |
5,9 |
|
|||
FІІ |
м2 |
9,9 |
|
||||
17 |
шт. |
3 |
|
||||
шт. |
5 |
|
|||||
18 |
кПа |
190,08 |
|
||||
кПа |
8,2 |
|
|||||
кПа |
16,04 |
|
|||||
кПа |
13,74 |
|
|||||
19 |
кВт |
200,14 |
|
Курсовой проект “Теплоснабжение”. |
27 |
По результатам расчёта к установке принимаем скоростной водоподогреватель типа 06 по ОСТ 34 – 588 – 68 со следующими техническими характеристиками:
Дн = 89 мм.
Двн = 82 мм.
L = 4410 мм.
l = 200 мм.
Z = 12
F = 2,24 м2
fтр = 0,00185 м2
fм. тр. = 0,00287 м2
В зимний период работают 2-ва подогревателя ГВ (Ⅰ и Ⅱ ступени) соединённые по двухступенчатой смешанной схеме. Подогреватель Ⅰ ступени имеет 3 секции. Подогреватель Ⅱ ступени имеет 5 секций.
В летний период включается только подогреватель Ⅱ ступени и к нему добавляется 1 секция.
Библиографический список.
- Теплоснабжение. Учеб. для вузов/ А.А. Ионин, Б.М. Хлыбов и др. Под ред. А.А. Ионина, -М.: Стройиздат, 1989.
2. Соколов Е.Я. Теплофикация и тепловые сети. Учуб. для вузов, -М.: Энергоиздат, 1999.
3. Расчёт и проектирование тепловых сетей. / А.Ю. Строй, В.Л. Скальский . –Киев.: Будивельник, 1981.
4. СНиП 23-01-99 «Строительная климатология»./ Госстрой России, 2000.
5. Наладка и эксплуатация водяных тепловых сетей. Справочник./ В.И. Манюк, ЯЧ.И. Каплинских и др. М.: Стройиздат, 1988.
6. СНиП 2.04.07-86 «Тепловые сети». / Гострой СССР. –М.: ЦИТ Госстроя СССР, 1987.
Курсовой проект “Теплоснабжение”. |
28 |