Тромбофилии
Рост числа тромбофилических состояний, отмечаемый в последние годы, открытие новых форм тромбофилии, вклад гиперкоагуляционных нарушений в течение и прогрессирование многих заболеваний определяют важность изучения этой патологии. Сегодня врачу уже не достаточно рутинных коагулологических анализов для уточнения состояния системы гемостаза. Сложные лабораторные исследования, в том числе иммуноферментные, позволяющие обнаружить молекулярные маркеры тромбофилии, и методы ДНК-диагностики, направленные на уточнение ее природы, дают возможность своевременно диагностировать гиперкоагуляционное состояние, определить подходы к его лечению.
Тромбофилия – это повышенная склонность организма к развитию тромбозов или внутрисосудистого свертывания крови, обусловленная нарушением регуляторных механизмов системы гемостаза или изменением свойств отдельных ее звеньев. З.С.Баркаган и А.П.Момот определяют тромбофилию как - нарушения гемостаза и гемореологии, которые характеризуются повышенной наклонностью к развитию тромбозов кровеносных сосудов и ишемией органов, в основе которых лежат нарушения в различных звеньях системы гемостаза и гемореологии.
В настоящее время термин «тромбофилия» применяют для выделения группы людей, у которых венозные тромбозы возникают в молодом возрасте, имеют тенденцию к повторению, у которых имеется семейная предрасположенность к тромбообразованию и отсутствует какая-либо иная патология, способная стимулировать возникновение тромбозов.
В последние два десятилетия интерес к изучению тромбофилий неуклонно возрастает. Это связано, во-первых, с крупными достижениями гемостазиологии (внедрение в эту область генетических и иммунологических методов исследования привело к открытию наследственных форм тромбофилии и ее молекулярных маркеров) и, во-вторых, с широкой распространенностью тромбофилических состояний.
Учение о тромбофилиях возникло лишь в середине 70-х годов 20 века. В 1965 году норвежский исследователь Олаф Эгерберг описал семью, у членов которой имела место наклонность к возникновению тромбозов в молодом возрасте. Эта тенденция передавалась по наследству, и тромбозами были поражены многие члены семьи. Исследую кровь страдавших, О.Эгерберг обнаружил у них резкое снижение уровня антитромбина ІІІ. В 1968-1970 гг. венгерский исследователь Г.Шаш показал возможность развития тромбофилии в результате изменения структуры молекулы антитромбина при нормальном ее количестве в крови. Через 15 лет была обнаружена вторая причина возможной тромбофилии – дефицит протеина С. Открытие сделал американец Дж.Гриффин, опубликовавший свое сообщение в 1981г. В 1984 г. Ч.Эсмон и П.Комп описали наследственное предрасположение к тромбозам в результате дефекта у пациентов протеина S. В 1993 г. шведский ученый Бьерн Дальбек описал семейную тромбофилию, причиной которой являлась неспособность крови реагировать на активированный протеин С. Это происходило в результате генетического дефекта, отвечающего за образование молекулы коагуляционного фактора 5. Данная тромбофилия получила название «Резистентность к активированному протеину С» - АПС-Р. Так как расшифровку дефектной молекулы фактора 5, которая заключалась в замене аминокислоты аргинина на глютамин в положении 506, сделали в Лейдене, заболевание стали называть «болезнь фактора V-Лейден». В 1996 г. голландские ученые сообщили об открытии мутации гена, ответственного за формирование молекулы протромбина. Наличие мутированного протромбина 20210 А, приводящего к увеличению его содержания в крови почти на 25%, позволило говорить о новом классе тромбофилий, возникающих за счет избытка в крови содержания прокоагулянтов. Существенным прогрессом в понимании развития повышенной склонности организма человека к тромбообразованию стало обнаружение связи между частотой тромбозов и уровнем гомоцистеина крови. C.Falcon и P. Mannucci, M.den Heijer и H.Blom (1995), а затем и другие показали, что гипергомоцистеинемия повышает склонность к развитию тромбоза в 2,5 раза. О том, как прогрессировала диагностика причин тромбообразования по мере выявления маркеров тромбофилии, говорят следующие факты. Зависимость частоты выявления генетического дефекта при тромбофилии у лиц с венозными тромбозами следующая: до 1965 г. –0%, 1965 (открыто значение антитромбина) – менее 5%, 1981 (открыто значение протеина С) – менее 10%, 1984 (открыто значение протеина S) – около 10-12%, 1994 (открыто значение АПС-Р) – около 60%, 1996 (протромбин 20210А) – около 80%.
Таблица. Маркеры тромбофилии и вероятность тромбоза (по M. Alhenc-Gelas и соавт., 2001)
Маркер |
Тип наследования |
Степень возрастания опасности тромбоза |
Протромбин 20210А Фактор V-Лейден Дефицит: протеина С протеина S антитромбина Фактор V-Лейден + другой генетический фактор риска Фактор V-Лейден Дефицит протеина С/S Фактор V ІІІ более 150% Гипергомоцистеинемия более 18 мкмоль/л |
гетерозиготный гетерозиготный гетерозиготный гетерозиготный гетерозиготный двойной гетерозиготный гомозиготный гомозиготный |
3-5 5-10 5-10 5-10 10-40 10-40 50-80 более 100 5-6 2-3 |
Исследования, позволяющие выявить наличие тромбофилии, далеко не всегда широко доступны в связи с их относительно высокой стоимостью. В связи с этим для проведения данных тестов необходимы веские основания. После точного установления наличия венозного тромбоза с помощью объективных методик – ультразвука, венографии, сцинтиграфии – следует исключить наличие заболеваний, которые могут быть причиной развития тромбозов. В первую очередь такими являются опухоли, болезни соединительной ткани – коллагенозы, иные аутоиммунные заболевания, инфекции, травмы. После этого следует рассматривать вопрос об исключении тромбофилий.
Об их наличии следует думать в следующих ситуациях:
1.
2.
3.
4.
5.
6. локализации (вен мозга, мезентериальных вен).
7.
8.
После этого следует принимать решение о том, какие тромбофилии следует исключать в первую очередь. Наиболее часто встречаются следующие: 1) фактор V-Лейден, 2) мутация протромбина 20210А, 3) антитромбин ІІІ, 4) дефект протеина С, 5) дефект протеина S, 6) гипергомоцистеинемия;
В здоровом организме система гемостаза поддерживает кровь в жидком состоянии. Свертывание крови происходит в результате взаимодействия сосудисто-клеточного и плазменного звеньев этой системы. В ответ на повреждение сосудистой стенки активируются тромбоциты, фосфолипидные мембраны которых представляют собой каталитическую поверхность для сборки ферментативных комплексов каскада коагуляции. Внешний путь свертывания инициируется взаимодействием крови с тканевым фактором, освобождающимся при повреждении тканей. Он связывает активированный фактор VІІ, а образующийся энзиматический комплекс активирует факторы ІΧ и Χ внутреннего и общего путей свертывания, соответствнно. Фактор ІΧ, в свою очередь, также активирует Χ фактор в реакции, кофактором которой служит VІІІ фактор. Активированный Χ фактор (Ха) превращает протромбин в тромбин (фактор ІІа), катализирующего эту реакцию. На заключительном этапе коагуляции тромбин расщепляет фибриноген с образованием мономеров фибрина, которые полимеризуются и связываются друг с другом, формирую стабильный сгусток. По механизму обратной связи тромбин также активирует кофакторы VІІІ и V, чем значительно усиливает механизм свертывания.
Расширение процесса коагуляции ограничивается действием белков-антикоагулянтов. Антитромбин ІІІ – плазменный протеин, ингибирующий активность сериновых протеаз внутреннего и общего путей свертывания. В присутствии эндогенного гепаран-сульфата скорость их инактивации увеличивается в сотни раз. Плазменные кофакторы свертывания - VІІІ и V факторы – инактивируются в результате расщепления их протеином С, активация которого тромбином в присутствии тромбомодулина, связанного с эндотелиальными клетками, значительно ускоряется протеином S, действующим как кофактор. Ингибитор внешнего пути свертывания – липопротеин-ассоциированный плазменный протеин – формирует комплекс с тканевым фактором и активированными факторами VІІ и Χ, приводя к их инактивации. На сформировавшийся тромб действует плазмин – сериновая протеаза, образующаяся в результате энзиматических реакций из плазминогена.
Резистентность к активированному протеину С
АРС-резистентность – наиболее частая генетическая форма тромбофилии, ассоциированная с венозными тромбозами. Впервые описана в 1993 г. Обнаруживается в популяции у 20% больных с первым эпизодом тромбоза, у 50% - с наследственными тромбофилиями и у 60% - с тромбозами при нормальных уровнях протеинов C,S, АТІІІ и антикардиолипиновых антител. У пациентов с АРС-резистентностью имеется точковая мутация гена V фактора (Лейденская мутация), в результате которой происходит замена аргинина на глутамин в 506 позиции последовательности аминокислот V фактора. Вследствие этой мутации последний приобретает устойчивость к протеолитическому действию активированного протеина С. Гетерозиготная Лейденская мутация встречается у 5% представителей европейской расы и сопряжена с 3-7 кратным увеличением риска тромбообразования. Гомозиготная форма мутации повышает этот риск в 80 раз. Риск развития тромбоза возрастает также при сочетании Лейденской мутации с другими причинами тромбофилии: дефицитом протеина S, гипергомоцистеинемией, использованием оральных контрацептивов, беременностью.Мутацию V фактора устанавливают с помощью ДНК-диагностики с помощью ПЦР. Диагностика АСР-резистентности осуществляется с помощью коагулологических проб.
Рисунок. Система протеина С
Протеин С |
Тромбин |
Тромбомодулин |
Протеин S |
Фактор Vа |
Фактор Vнеактивный |
Фактор VІІІ а |
Фактор VІІІнеактивный |
Активный протеин С |
Дефицит протеина С
Дефицит протеина С встречается с частотой не более 0,5% в общей популяции. У больных с первым эпизодом тромбоза его обнаруживают в 3% случаев. При гетерозиготной форме дефицита протеина С риск развития венозный тромбозов увеличивается в 7 раз. Частота их в семьях с этим генетическим дефектом составляет 50%. Уровень протеина С при такой форме колеблется от 35 до 65% от нормы. Первый тромботический эпизод регистрируется в возрасте 10-50 лет. У пациентов с дефицитом протеина С отмечается повышенный риск развития кожных некрозов при лечении оральными антикоагулянтами кумаринового ряда. У новорожденных с гомозиготным дефицитом протеина С, имеющих крайне низкий его уровень, возможно развитие фульминантной пурпуры или диссеминированного внутрисосудистого свертывания крови, что было несовместимо с жизнью до начала применения в таких ситуациях инфузий свежезамороженной плазмы, являющейся источником протеина С, или его концентрата.
В отличие от АРС-резистентности, связанной с единственной мутацией, причинами наследственного дефицита протеина С могут быть более 160 мутаций. Поэтому ДНК-диагностика этой формы тромбофилии практически не возможна в обычных медицинских учреждениях.
Дефицит протеина С чаще бывает количественным (тип 1) и реже – качественным (тип 2). Первый тип характеризуется присутствием в плазме небольших количеств нормального протеина С. При втором типе, напротив, циркулирует достаточное количество аномального протеина С с низкой функциональной активностью. Функциональную активность протеина С определяют с помощью коагулологических методов, а его уровень (независимо от функциональной активности) – иммуноферментным методом. Использование обеих методов позволяет заключить, что 1 тип характеризуется снижением содержания антигена протеина С в сочетании в его низкой активностью, а 2 – нормальным уровнем антигена при низкой функциональной активности.
Дефицит протеина S
Протеин S служит кофактором в реакции инактивации факторов Vа и VІІІа активированным протеином С. У взрослых людей пул протеина S состоит из свободного протеина S, обладающего функциональной активностью (40% от общего количества), и связанного белка (60%) в составе комплекса с С4b-связывающим протеином. Наследственный дефицит протеина S встречается у 0,7% людей в общей популяции и 3% пациентов с венозными тромбозами. В семьях с наследственным дефицитом этого антикоагулянта частота тромбозов составляет 19-47%. Связь дефицита протеина S с артериальными тромбозами не установлена. Как и при наличии дефицита протеина С первый тромботический эпизод развивается в возрасте 10-50 лет. При наследственном дефиците протеина S возможно развитие кумарин-индуцированных кожных некрозов, а также фульминантной пурпуры и ДВС-синдрома новорожденных (гомозиготная форма дефицита). Риск тромбозов возрастает при комбинации дефицита протеина S с другими наследственными или приобретенными тромбофилиями. Наследственный дефицит протеина S могут вызвать более 70 мутаций гена, кодирующего синтез этого белка.
Известны количественный (І) и качественный (ІІ) типы дефицита протеина S. І тип характеризуется снижением и общего количества, и функциональной активности антикоагулянта, выявляемых иммуноферментным и коагулологическим методом, соответственно. Качественный дефицит протеина S существует в двух формах: ІІb и ІІа. При ІІb типе имеется нормальное количество общего и свободного протеина S, определяемого по нормальным уровням общего и свободного (несвязанного) антигенов, при его низкой функциональной активности. ІІа тип дефицита характеризуется снижением функциональной активности протеина S и его свободного количества, тогда как общий уровень белка остается нормальным.
Дефицит антитромбина ІІІ
Дефицит АТ ІІІ был первой формой наследственной тромбофилии, описанной Egerberg в 1965 г. АТ ІІІ – самый мощный естественный антикоагулянт, ингибирующий, наряду с тромбином, еще несколько факторов свертывания – активированные факторы ІХ, Х, ХІ и ХІІ. Дефицит АТ ІІІ в общей популяции выявляют в 0,17% случаев, среди больных тромбозами и ТЭЛА – в 1,1%. В семьях с наследственным дефицитом АТ ІІІ тромботические осложнения возникают у 50% родственников. У лиц, гетерозиготных по дефициту АТ ІІІ, его уровень составляет 45-75%. Пик тромбозов при этой форме тромбофилии приходится на возраст 15-35 лет. В целом риск тромбозов, обусловленных дефицитом АТ ІІІ, превышает таковой при дефиците протеинов С, S и АРС-резистентности. Гомозиготный дефицит АТ ІІІ не совместим с жизнью, за исключением дефицита, связанного с дефектом гепаринсвязывающего домена молекулы АТ ІІІ в результате соответствующей мутации. Больные с таким типом дефицита имеют высокий риск не только венозных, но и артериальных тромбозов. Описано около 130 мутаций гена АТ ІІІ, что делает практически невозможной ДНК-диагностику этого состояния вне специализированных исследовательских лабораторий.
Как и при дефиците других белков-антикоагулянтов, описаны количественный (І) и качественный (ІІ) типы дефицита АТ ІІІ. І тип характеризуется снижением общего количества и функциональной активности АТ ІІІ, ІІ тип – нормальным уровнем антигена АТ ІІІ при сниженной функциональной активности. Для их диагностики проводят не только иммуноферментный, но и коагулологический анализ, который позволяет выявить функциональный дефицит антикоагулянта, который встречается на порядок чаще количественного (0,015% и 0,02% наблюдений, соответственно).
Мутация гена протромбина 20210А
Мутация была описана в 1996г.Клинически ее можно заподозрить по постоянно высокому уровню протромбина в плазме крови (у 87% носителей превышает 115%). Мутация наследуется по аутосомно-доминантному типу, гетерозиготная ее форма встречается у 2,3% людей в общей популяции и 6,2% больных с венозными тромбозами. Мутация G20210A сопряжена с высоким риском тромбозов не только в периферических венах и венах головного мозга, но и в артериях с развитием ишемических инсультов и ИБС у молодых пациентов. Мутация гена протромбина диагностируется методом ПЦР.
Гипергомоцистеинемия
Аминокислота гомоцистеин образуется из метионина. Существует два внутриклеточных пути метаболизма гомоцистеина: реметилирование в метионин и транссульфирование в цистеин. Кофакторами первого пути являются витамин В12 и фолиевая кислота, второго – витамин В6. Гипергомоцистеинемия встречается в популяции с частотой 5-10% и классифицируется как слабая при уровне гомоцистеина в плазме крови 15-30 мкмоль/л, умеренная – при уровне 30-100 мкмоль/л и выраженная – при уровне более 100 мкмоль/л. Частота выраженной гипергомоцистеинемии в популяции составляет 0,4%. Гипергомоцистеинемию выявляют у 10-25% пациентов с венозными тромбозами. Она также является независимым фактором риска атеросклероза, не уступающим по силе курению и гиперлипидемии.
Наследственные формы гипергомоцистеинемии обусловлены дефицитом ферментов, которые принимаю участие в метаболизме гомоцистеина. Наиболее часто встречается дефицит цистатион-β-синтазы, принимающей участие в транссульфировании гомоцистеина, и 5,10-метилентетрагидрофолатредуктазы – фермента процесса реметилирования.
Основной причиной выраженной гипергомоцистеинемии является дефицит цистатион-β-синтазы вследствие мутации гена, кодирующего синтез этого фермента. Гомозиготная форма дефицита цистатион-β-синтазы (наследственная гомоцистеинурия) встречается редко – 1 на 200000 новорожденных. Характеризуется крайне высоким уровнем гомоцистеина в крови, нередко превышающим 400 мкмоль/л, клинически проявляется ранним развитием венозных и артериальных тромбозов, а также атеросклероза у лиц с патологией скелета и задержкой умственного развития. Гетерозиготный дефицит цистатион-β-синтазы характеризуется умеренной гипергомоцистеинемией, как правило, не превышающей 20-40 ммоль/л, и никак себя не проявляет до первого эпизода венозного или артериального тромбоза в молодом возрасте. Частота этой формы гипергомоцистеинемии в популяции составляет 0,3-1,4%.
Существенно чаще встречается дефицит 5,10-метилентетрагидрофолатредуктазы - у 5% людей в общей популяции (у 15% - в США и Канаде). У пациентов с атеросклерозом эта форма гипергомоцистеинемии встречается в 19% случаев. К настоящему времени установлены 9 мутаций гена метилентетрагидрофолатредуктазы. Наиболее растпространенной является точковая мутация С677Т, связанная с заменой аланина на валин, в результате чего образуется термолабильная форма фермента. Эта мутация является причиной умеренной гипергомоцистеинемии и, как полагают, может иметь значение только у людей с приобретенным дефицитом фолатов.
Механизмы протромбогенного и антиатеросклеротического действия гомоцистеина многообразны и включают в себя повреждение эндотелиальных клеток с последующей активацией тромбоцитов и экспрессией тканевого фактора, активирующего каскад коагуляции, перекисное окисление липидов, окислительную модификацию липопротеидов низкой плотности, усиливающие повреждение сосудистой стенки. Сочетание гипергомоцистеинемии с другими формами фромбофилии повышает риск развития тромбозов.
Уровень гомоцистеина в крови определяют разными методами, в том числе и иммуноферментным. Точность диагностики повышается при исследовании уровня гомоцистеина через 6 часов после нагрузки метионином, приводящей к увеличению концентрации гомоцистеина в 3-4 раза. С помощью ПЦР выявляют соответствующие мутации генов, лежащие в основе гипергомоцистеинемии.
Повышение уровня гомоцистеина легко устраняется приемом витаминов В12, В6 и фолиевой кислоты. Однако до настоящего времени не ясно, приводит ли его нормализация к уменьшению риска развития венозных и артериальных тромбозов, хотя работы, демонстрирующие такую связь появились.
Лечение
Основным способом борьбы с тромбозами, обусловленными тромбофилиями, является их предупреждение. Тромбозы, уже возникшие при наличии тромбофилий, следует лечить в соответствии с общими правилами лечения тромбозов, как артериальных, так и венозных. По сути дела, на сегодняшний день единственным способом осуществления профилактики тромбозов являются антикоагулянты – геперины и антивитамины К. Роль антиагрегантов изучается.
Момент начала антикоагулянтной терапии является очень ответственным. При принятии решения о целесообразности назначения оральных антикоагулянтов (ОАК) исходят из предположительной степени опасности, которая грозит пациенту как от самого заболевания, так и от предполагаемого лечения. Достаточно точно подсчитано, что частота геморрагий на фоне антикоагулятной терапии антивитаминами К колеблется от 2 до 10%, при этом фатальные геморрагии составляют примерно 0,5%. Для того чтобы эта терапия помогла больному, в расчет следует принять как пользу от данного лечения, так и степень угрозы кровотечения. При принятии решения необходимо основываться на фактах доказанного в прошлом тромботического эпизода, наличии наследуемого фактора, а также характере выраженности наследования – является оно гомозиготным или гетерозиготным. Кроме этих данных, обязательно следует принимать во внимание конкретную степень риска, имеющуюся у пациента в момент назначения лекарств. При этом рассматривают несколько вариантов. Первый предусматривает выявление тромботической симптоматики в прошлом или ее отсутствие. Второй определяет степень выраженности риска – сильную или слабую. При сильном риске тромбообразования, который имеет место при наличии травмы или во время проведения хирургической операции, во время беременности ли в процессе родов, антикоагулянтная терапия, по имеющимся подсчетам, предупреждает половину возможных тромбозов. При планировании профилактических мероприятий необходимо учитывать, что частота тромбоэмболий при дефиците антитромбина, протеина С и S составляет около 30%. У пациентов с носительством фактора Лейдена риск тромботических осложнений составляет около 4%. В связи с этим пациентам с дефектами протеина С и S, а также антитромбина ІІІ назначают ОАК или малые дозы гепарина при хирургическом вмешательстве или иммобилизации пациента даже при отсутствии клинической симптоматики. Больным с дефектом АПС-Р рекомендуется лечение профилактическими дозами гепарина низкомолекулярного веса (ГНМВ) при операции и создании строгой иммобилизации пациента
Таблица.Профилактика ВТЭ при бессимптомных тромбофилиях
Тип тромбофилии |
Травма, хирургия |
Эстрогены |
Антитромбин, протеин С и S Фактор V- Лейден, протромбин 20210А Гипергомоцистеинемия |
Продолжительное лечение гепаринами (ГНМВ) Рутинная профилактика Клиническое наблюдение, витамины |
Воздерфание от лечения То же Неизвестно |
Таблица. Длительность антикоагулянтной терапии после 1-го эпизода ВТЭ у больного тромбофилией
Тип тромбофилии, повод для возникновения тромбоза |
Продолжительность лечения, мес. |
Антитромбин: -спонтанно -был повод Протеин С: -спонтанно -был повод Протеин S: - спонтанно -был повод Фактор V- Лейден -спонтанно -был повод Протромбин 20210А: - спонтанно -был повод Гомозиготная тромбофилия (любая) Гипергомоцистеинемия |
12 6 12 6 12 6 6 3 6 3 От12 до неопределенного срока От 3 до 6 в сочетании с витаминами |
Таблица. Профилактика тромбоэмболии при беременности и в раннем
послеродовом периоде
Тромбофилия |
Беременость |
Послеродовый период |
Дефицит антитромбина Дефицит протеина С и S Фактор V- Лейден, протромбин 20210А Гипергомоцистеинемия |
Профилактика в течение всей беременности Наблюдение Наблюдение Наблюдение, витамины |
ОАК 4-6 нед, следить за уровнем антиромбина ОАК 4-6 недель ОАК 4-6 месяцев Неизвестно |
Изучение проблемы тромбофилии активно продолжается. Можно полагать, что утверждения о том, что семейная тромбофилия – олигогенная патология, будут не такими категоричными, так как возможности человеческого организма практически безграничны. В то же время следует считать, что генетический подход поможет идентифицировать те генетические дефекты, которые сегодня только предполагаются. Клинический опыт, который медицина приобретает по мере наблюдения больных с наследуемой тромбофилией, будет обобщаться, и это, несомненно, поможет улучшить показатели в лечении больных.