Автоматизированный электропривод механизма перемещения стола продольно-строгального станка
Министерство общего и профессионального образования Российской Федерации
Уральский государственный профессионально-педагогический университет
Кафедра электрооборудования и автоматизации промышленных предприятий
КУРСОВАЯ РАБОТА
Предмет: "Автоматизированный электропривод"
Тема: "Автоматизированный электропривод механизма перемещения стола продольно-строгального станка."
Выполнил:
Студент гр.СОЗ382 Калабин А.А.
Проверил: Сусенко О.С.
г. Сарапул
2001год.
СОДЕРЖАНИЕ
TOC \o ВВЕДЕНИЕ................................................................................................................................................................................. PAGEREF _Toc517278443 \h 3
1 ИСХОДНЫЕ ДАННЫЕ...................................................................................................................................................... PAGEREF _Toc517278444 \h 4
2 ВЫБОР ТИПА ЭЛЕКТРОПРИВОДА............................................................................................................................ PAGEREF _Toc517278445 \h 6
3 ВЫБОР И ПРОВЕРКА ЭЛЕКТРОДВИГАТЕЛЯ....................................................................................................... PAGEREF _Toc517278446 \h 7
3.1 РАСЧЕТ НАГРУЗОЧНОЙ ДИАГРАММЫ МЕХАНИЗМА................................................................................ \h
3.2 ПРЕДВАРИТЕЛЬНЫЙ ВЫБОР ДВИГАТЕЛЯ...................................................................................................... \h
3.3 РАСЧЕТ НАГРУЗОЧНОЙ ДИАГРАММЫ ДВИГАТЕЛЯ................................................................................ \h
3.4 Проверка двигателя по нагреву............................................................................................................. \h
4 ВЫБОР ОСНОВНЫХ УЗЛОВ СИЛОВОЙ ЧАСТИ............................................................................................... PAGEREF _Toc517278451 \h 18
4.1 ВЫБОР ТИРИСТОРНОГО ПРЕОБРАЗОВАТЕЛЯ.............................................................................................. \h
4.2 ВЫБОР СИЛОВОГО ТРАНСФОРМАТОРА......................................................................................................... \h
4.3 выбор сглаживающего реактора.......................................................................................................... \h
4.4 принципиальная электрическая схема силовой части.................................................... \h
5 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СИЛОВОЙ ЧАСТИ ЭЛЕКТРОПРИВОДА.............................................. PAGEREF _Toc517278456 \h 23
5.1 РАСЧЕТ ЭКВИВАЛЕНТНЫХ ПАРАМЕТРОВ СИСТЕМЫ............................................................................ \h
5.2 Переход к системе относительных единиц................................................................................. \h
5.3 структурная схема объекта управления....................................................................................... \h
6 ВЫБОР ТИПА СИСТЕМЫ РЕГУЛИРОВАНИЯ СКОРОСТИ.......................................................................... PAGEREF _Toc517278460 \h 27
7 РАСЧЕТ КОНТУРА РЕГУЛИРОВАНИЯ ТОКА ЯКОРЯ И ЦЕПИ КОМПЕНСАЦИИ ЭДС ЯКОРЯ............................................................................................................................................. PAGEREF _Toc517278461 \h 30
7.1 ВЫБОР КОМПЕНСИРУЕМОЙ ПОСТОЯННОЙ................................................................................................ \h
7.2 расчет контура регулирования тока якоря.................................................................................. \h
7.2.1 Расчетная структурная схема контура тока........................................................................................... PAGEREF _Toc517278464 \h 30
7.2.2 Передаточная функция регулятора тока................................................................................................... PAGEREF _Toc517278465 \h 31
7.2.3 Компенсация влияния ЭДС якоря двигателя.............................................................................................. PAGEREF _Toc517278466 \h 32
7.2.4 Реализация датчика ЭДС................................................................................................................................ PAGEREF _Toc517278467 \h 33
7.3 Конструктивный РАСЧЕТ............................................................................................................................... \h
8 РАСЧЕТ КОНТУРА РЕГУЛИРОВАНИЯ СКОРОСТИ........................................................................................ PAGEREF _Toc517278469 \h 36
8.1 рАСЧЕТНАЯ СТРУКТУРНАЯ СХЕМА КОНТУРА РЕГУЛИРОВАНИЯ СКОРОСТИ............................ \h
8.2 расчет регулятора скорости..................................................................................................................... \h
8.3 конструктивный расчет............................................................................................................................... \h
9 РАСЧЕТ ЗАДАТЧИКА ИНТЕНСИВНОСТИ........................................................................................................... PAGEREF _Toc517278473 \h 39
9.1 СТРУКТУРНАЯ СХЕМА ЗАДАТЧИКА ИНТЕНСИВНОСТИ....................................................................... \h
9.2 расчет параметров Зи..................................................................................................................................... \h
9.3 конструктивный РАСЧЕТ............................................................................................................................... \h
10 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ САР СКОРОСТИ........................................................................... PAGEREF _Toc517278477 \h 42
ЛИТЕРАТУРА......................................................................................................................................................................... PAGEREF _Toc517278478 \h 43
ВВЕДЕНИЕ
|
1
Рисунок SEQ Рисунок \* ARABIC 2 Кинематическая схема механизма |
Исходные данные
Исходные данные |
Условные обозначения |
Значение |
Усилие резания |
Fz |
170000 Н |
Скорость рабочего хода |
Vпр |
0,4 м/с |
Скорость обратного хода |
Vобр |
0,8 м/с |
Масса стола |
mc |
15000 кг |
Масса детали |
mд |
23000 кг |
Радиус ведущей шестерни |
rш |
0,25 м |
Длинна детали |
Lд |
4 м |
Путь подхода детали к резцу |
Lп |
0,2 м |
Путь после выхода резца из металла |
Lв |
0,15 м |
Коэффициент трения стола о направляющие |
μ |
0,06 |
КПД механической передачи при рабочей нагрузке |
ηпN |
0,95 |
КПД механических передач при перемещении стола на холостом ходу |
ηпхх |
0,5 |
Задание к проекту:
Для механизма перемещения стола продольно-строгального станка выбрать тип электропривода, выполнить выбор электродвигателя и его проверку по нагреву и перегрузке, выбрать силовой преобразовательный агрегат, силовой трансформатор и реакторы, выполнить расчет элементов системы автоматического управления электроприводом, выполнить компьютерное моделирование системы автоматизированного электропривода в типовых режимах.
Требования к электроприводу:
1.
• подход детали к резцу с пониженной скоростью;
• врезание на пониженной скорости;
• разгон до рабочей скорости прямого хода;
• резание на скорости прямого хода;
• замедление до пониженной скорости перед выходом резца;
• выход резца из детали;
• замедление до остановки;
• разгон в обратном направлении до рабочей скорости обратного хода;
• возврат стола на холостом ходу со скоростью обратного хода;
• замедление до остановки (стол возвращается в исходное положение). Пониженную скорость принять: Vпон = 0,4·Vпр
2.
3.
4.
5.
2
Заданным требованиям соответствует регулируемый электропривод с двигателем постоянного тока независимого возбуждения и замкнутой по скорости системой автоматического регулирования. В качестве управляемого преобразователя выбираем реверсивный тиристорный преобразователь. Такой электропривод обеспечивает высокие показатели качества регулирования скорости, высокую точность и быстродействие надежность, простоту в наладке и эксплуатации. Регулирование скорости принимается однозонным (управление изменением напряжения якоря двигателя при постоянном потоке возбуждения). Система управления электроприводом реализуется на аналоговой элементной базе.
3
3.1
Для предварительного выбора двигателя построим нагрузочную диаграмму механизма (график статических нагрузок механизма) Расчет времени участков цикла на этапе предварительного выбора двигателя выполняем приблизительно, т.к. пока нельзя определить время разгонов и замедлений (суммарный момент инерции привода до выбора двигателя неизвестен).
Пониженная скорость входа резца в металл (принимается):
Vпр - скорость рабочего хода (Vп = 0,4 м/с, см. таб. 1)
Усилие перемещения стола на холостом ходу:
mс - масса стола (mс = 15000 кг, см таб. 1);
mд - масса детали (mд = 23000 кг, см таб. 1);
g - ускорение свободного падения (g = 9,81 м/с2);
μ - коэффициент трения стола о направляющие (μ = 0,06, см таб. 1).
Усилие перемещения стола при резании:
Fz - усилие резания (Fz = 170000 Н, см. таб. 1).
Время резания (приблизительно):
Lд - длинна детали (Lд = 4 м, см. таб. 1);
Время подхода детали к резцу (приблизительно):
Lп - длинна подхода детали к резцу (Lп = 0,2 м, см. таб. 1);
Время прямого хода после выхода резца из детали (приблизительно):
Lв - путь после выхода резца из металла (Lв = 0,15 м, см. таб. 1);
Время возврата стола (приблизительно):
Vобр - скорость обратного хода.
|
Fхх = 22,37 |
tп = 1,25 |
-Fхх = - 22,37 |
Fр = 192,37 |
F (КН) |
Fр |
Fхх |
tр = 10 |
tв = 0,94 |
tобр = 5,44 |
tц = 17,63 |
tр (с) |
3.2
При расчете мощности двигателя полагаем, что номинальной скорости двигателя соответствует скорость обратного хода стола (наибольшая скорость механизма), т.к. принято однозонное регулирование скорости, осуществляемое вниз от номинальной скорости. Ориентируемся на выбор двигателя серии Д, рассчитанного на номинальный режим работы S1 и имеющего принудительную вентиляцию.
Эквивалентное статическое усилие за цикл:
Расчетная мощность двигателя:
Кз - коэффициент запаса (примем Кз = 1,2);
ηпN - КПД механических передач при рабочей нагрузке.
Выбираем двигатель Д816 по [2]. Номинальные данные двигателя приводятся в таб. 2.
Таблица SEQ Таблица \* ARABIC 2
Данные выбранного двигателя
Параметр |
Обозначение |
Значение |
Мощность номинальная |
PN |
150000 Вт |
Номинальное напряжение якоря |
UяN |
220 В |
Номинальный ток якоря |
IяN |
745 А |
Номинальная частота вращения |
ηN |
480 об/мин |
Максимальный момент |
Мmax |
8040 Нм |
Сопротивление обмотки якоря |
Rя0 |
0,0059 Ом |
Сопротивление обмотки добавочных полюсов |
Rдп |
0,0032 Ом |
Температура, для которой даны сопротивления |
Т |
20˚С |
Момент инерции якоря двигателя |
Jд |
16,25 кг·м2 |
Число пар полюсов |
рп |
2 |
Допустимая величина действующего значения переменной составляющей тока якоря отнесенная к номинальному току (коэффициент пульсаций) |
kI(доп) |
0,15 |
Двигатель данной серии не компенсированный, имеет принудительную вентиляцию и изоляцию класса Н.
Для дальнейших расчетов потребуется ряд данных двигателя, которые не приведены в справочнике. Выполним расчет недостающих данных двигателя.
Сопротивление цепи якоря двигателя, приведенное к рабочей температуре:
kт - коэффициент увеличения сопротивления при нагреве до рабочей температуры (kт = 1,38 для изоляции класса Н при пересчете от 20˚С).
Номинальная ЭДС якоря:
Номинальная угловая скорость:
Конструктивная постоянная, умноженная на номинальный магнитный поток:
Номинальный момент двигателя:
Момент холостого хода двигателя:
Индуктивность цепи якоря двигателя:
С - коэффициент (для некомпенсированного двигателя С = 0,6)
3.3
Для проверки выбранного двигателя по нагреву выполним построение упрощенной нагрузочной диаграммы двигателя (без учета электромагнитных переходных процессов). Для построения нагрузочной диаграммы произведем расчет передаточного числа редуктора, приведение моментов статического сопротивления и рабочих скоростей к валу двигателя, примем динамический момент и ускорение электропривода с учетом перегрузочной способности двигателя.
Передаточное число редуктора:
Момент статического сопротивления при резании, приведенный к валу двигателя:
Момент статического сопротивления при перемещении стола на холостом ходу, приведенный к валу двигателя:
Пониженная скорость, приведенная к валу двигателя:
Скорость прямого хода, приведенная к валу двигателя:
Скорость обратного хода, приведенная к валу двигателя:
Суммарный момент инерции привода:
, где
δ - коэффициент, учитывающий момент инерции полумуфт, ведущей шестерни и редуктора (δ принимаем равным 1,2).
Модуль динамического момента двигателя по условию максимального использования двигателя по перегрузочной способности:
, где
k - коэффициент, учитывающий перерегулирование момента на уточненной нагрузочной диаграмме (построенной с учетом электромагнитной инерции цепи якоря). Принимаем k = 0,95.
Ускорение вала двигателя в переходных режимах:
Ускорение стола в переходных режимах:
Разбиваем нагрузочную диаграмму на 12 интервалов. Сначала рассчитываем интервалы разгона и замедления электропривода, затем интервалы работы с постоянной скоростью.
Интервал 1. Разгон до пониженной скорости.
Продолжительность интервала 1:
Путь, пройденный столом на интервале 1:
Момент двигателя на интервале 1:
Интервал 4. Разгон от пониженной скорости до скорости прямого хода.
Продолжительность интервала 4:
Путь, пройденный столом на интервале 4:
Момент двигателя на интервале 4:
Интервал 6. Замедление от скорости прямого хода до пониженной скорости.
Продолжительность интервала 6:
Путь, пройденный столом на интервале 6:
Момент двигателя на интервале 6:
Интервал 9. Замедление от пониженной скорости до остановки.
Продолжительность интервала 9:
Путь, пройденный столом на интервале 9:
Момент двигателя на интервале 9:
Интервал 10. Разгон до скорости обратного хода.
Продолжительность интервала 10:
Путь, пройденный столом на интервале 10:
Момент двигателя на интервале 10:
Интервал 12. Замедление от скорости обратного хода до остановки.
Продолжительность интервала 12:
Путь, пройденный столом на интервале 12:
Момент двигателя на интервале 12:
Интервал 2. Подход детали к резцу с постоянной скоростью.
Путь, пройденный столом на интервале 2:
Продолжительность интервала 2:
Момент двигателя на интервале 2:
Интервал 8. Отход детали от резца с постоянной скоростью.
Путь, пройденный столом на интервале 8:
Продолжительность интервала 8:
Момент двигателя на интервале 8:
Интервал 3. Резание на пониженной скорости
Путь, пройденный столом на интервале 3 (принимается):
Продолжительность интервала 3:
Момент двигателя на интервале 3:
Интервал 7. Резание на пониженной скорости
Путь, пройденный столом на интервале 7 (принимается):
Продолжительность интервала 7:
Момент двигателя на интервале 7:
Интервал 5. Резание на скорости прямого хода
Путь, пройденный столом на интервале 5 (принимается):
Продолжительность интервала 5:
Момент двигателя на интервале 5:
Интервал 11. Возврат со скоростью обратного хода
Путь, пройденный столом на интервале 11:
Продолжительность интервала 11:
Момент двигателя на интервале 5:
|
Ω |
М |
t |
t |
Ωпон |
Ωпон |
Ωпон |
-Ωобр |
М1
|
М2
|
М4
|
М5
|
М6
|
М7
|
М8
|
М9
|
М10
|
М11
|
t1
|
t2
|
t3
|
t4
|
t5
|
М3
|
М12
|
t6
|
t7
|
t8
|
t10
|
t11
|
t9
|
t12
|
Тахограмма |
Нагрузочная диаграмма |
3.4
Для проверки двигателя по нагреву используем метод эквивалентного момента. Используя нагрузочную диаграмму находим эквивалентный по нагреву момент за цикл работы привода. Для нормального теплового состояния двигателя необходимо, чтобы эквивалентный момент был не больше номинального момента двигателя.
Эквивалентный момент за цикл работы:
Условие выполняется -
Запас по нагреву:
4
4.1
Номинальное выпрямленное напряжение и номинальный выпрямленный ток преобразователя принимаем из ряда стандартных значений по ГОСТ 6827-76 (ближайшее большее по сравнению с номинальным напряжением и током двигателя)[3].
Принимаем UdN = 230 В; IdN = 800 А.
Выбираем стандартный преобразователь комплектного тиристорного электропривода серии КТЭУ [4]. Выбираем двухкомплектный реверсивный преобразователь, схема соединения комплектов встречно-параллельная, управление комплектами раздельное, каждый комплект выполнен по трехфазной мостовой схеме.
Номинальное напряжение комплектного электропривода равно номинальному напряжению двигателя: Uном = 220 В. Номинальный ток комплектного электропривода выбирается по номинальному току преобразователя: Iном = 800 А.
Выбираем тип комплектного электропривода:
КТЭУ-800/220-13212-УХЛ4.
4.2
Силовой трансформатор предназначен для согласования напряжения сети (Uс = 380 В) с номинальным напряжением преобразователя.
Номинальное линейное напряжение вторичных обмоток (расчетное):
Номинальный линейный ток вторичных обмоток (расчетный):
Выбираем трансформатор типа ТСП (или ТСЗП), трехфазный, двухобмоточный, сухой с естественным воздушным охлаждением, открытого исполнения [2, таб. 3.1]
Таблица SEQ Таблица \* ARABIC 3
Данные выбранного трансформатора
Параметр |
Значение |
Тип трансформатора |
ТСЗП-250/0,7 |
Способ соединения первичной и вторичной обмоток |
Звезда - звезда |
Номинальная мощность |
SТ = 235 кВА |
Номинальное линейное напряжение первичных обмоток |
U1N = 380 В |
Номинальное линейное напряжение вторичных обмоток |
U2N = 208 В |
Номинальный линейный ток вторичных обмоток |
I2N = 635 В |
Потери КЗ |
РК = 3800 Вт |
Относительно напряжение короткого замыкания |
uK = 4,5% |
Рассчитываем параметры трансформатора:
Коэффициент трансформации:
Номинальный линейный ток первичных обмоток:
Активное сопротивление обмоток одной фазы трансформатора:
Активная составляющая напряжения короткого замыкания:
Реактивная составляющая напряжения короткого замыкания:
Индуктивное сопротивление обмоток одной фазы трансформатора:
Индуктивность фазы трансформатора:
где
Ωс - угловая частота сети (
4.3
Сглаживающий редактор включается в цепь выпрямленного тока с целью уменьшения его переменной составляющей. Пульсации выпрямленного тока должны быть ограничены на уровне допустимого значения для выбранного двигателя.
ЭДС преобразователя при угле управления α = 0:
Минимальная суммарная (эквивалентная) индуктивность якорной цепи по условию ограничения пульсаций выпрямленного тока:
kU - коэффициент пульсаций напряжения (для трехфазной мостовой схемы принимаем kU =0,13),
р - пульсность преобразователя (для мостовой трехфазной схемы р = 6)
Расчетная индуктивность сглаживающего реактора:
Так как расчетная индуктивность оказалась отрицательной, сглаживающий реактор не требуется. Собственной индуктивности якорной цепи достаточно для ограничения пульсаций тока.
4.4
Рисунок SEQ Рисунок \* ARABIC 5 Силовая часть однодвигательного электропривода серии КТЭУ, Iном = 800 А. |
5
5.1
Рисунок SEQ Рисунок \* ARABIC 6 Полная расчетная схема системы ТП-Д. |
Рисунок 7 Эквивалентная расчетная схема системы ТП-Д. |
EЯ |
IЯ |
LЭ |
Uу |
Ed |
RЭ |
Uу |
2RТ |
2LТ |
Rγ |
RЯ |
Ed |
IЯ |
EЯ |
Lя |
Определим эквивалентные параметры ТП-Д.
Фиктивное активное сопротивление преобразователя обусловленное коммутацией тиристоров:
Эквивалентное сопротивление якорной цепи:
Эквивалентная индуктивность якорной цепи:
Электромагнитная постоянная времени якорной цепи:
, где
Uy max = 10 В - максимальное напряжение управления СИФУ.
5.2
Для дальнейших расчетов все параметры и переменные системы представим в относительных единицах. Общая формула перехода к относительным единицам имеет вид:
, где
y - значение величины в системе относительных единиц;
Y - значение физической величины в исходной системе единиц;
Yб - базисное значение, выраженное в той же системе единиц, что и величина Y.
Принимаем базисные величины:
Базисное напряжение для силовой части:
Базисный ток для силовой части:
Базисная скорость:
Базисный момент:
Базисное напряжение для системы регулирования (принято):
Базисный ток для системы регулирования (принято):
Базисное сопротивление для системы регулирования:
Далее используем следующие переменные в относительных единицах (о.е.):
Напряжение управления преобразователя в о.е.:
ЭДС преобразователя в о.е.:
ЭДС якоря двигателя в о.е.:
Ток якоря в о.е.:
Момент статического сопротивления в о.е.:
Скорость двигателя в о.е.:
Определим параметры объекта управления в о.е.
Эквивалентное сопротивление якорной цепи в о.е.:
Коэффициент преобразователя в о.е.:
Механическая постоянная времени:
Электромеханическая постоянная времени:
, где
φ - магнитный поток в о.е. (при однозонном регулировании скорости φ = 1).
5.3
На структурной схеме объекта управления (рис. 8) представлены следующие звенья:
ТП - тиристорный преобразователь (безынерционное звено);
ЯЦ - якорная цепь двигателя (апериодическое звено с постоянной времени Тэ);
МЧ - механическая часть привода (интегрирующее звено с постоянной времени Тj).
uу |
eп |
m |
ω |
eя |
- |
iя |
mс |
- |
ТП |
ЯЦ |
МЧ |
Рисунок 8 Структурная схема объекта управления |
6
в настоящее время в электроприводе при создании системы автоматического управления нашел применение принцип подчиненного регулирования с последовательной коррекцией.
x3iш |
x3i-1 |
x3i-2 |
x32ш |
x1 |
xi-2 |
xi-1 |
Регулирующая часть |
Объект регулирования |
Рисунок 9 Структурная схема СПР |
1. W01(p), W02(p), …, W0i-1(p), W0i(p), выходными параметрами которых являются контролируемые координаты объекта: напряжение, ток, скорость и т.д.
2. Wр1(p), Wр2(p), …, Wрi(р) в СПР устанавливается равным количеству регулируемых величин. Все регуляторы соединяются последовательно, так что выход одного является входом другого. Кроме того на вход каждого регулятора подается отрицательная обратная связь по той переменной, которая регулируется данным регулятором. В результате этого в системе образуются как бы вложенные друг в друга контуры регулирования. Таким образом, число контуров регулирования равно количеству регулируемых координат объекта.
3.
4.
5. Тμ этого фильтра является основным параметром системы авторегулирования и определяет важнейшие свойства системы.
6. Wpi(p) i-го контура стремятся решить две основные задачи:
-
-
Передаточная функция регулятора i-го контура будет иметь вид:
Настройка системы производится путем последовательной оптимизации контуров регулирования. Каждый контур оптимизируется по модульному или симметричному оптимумам, в основе которых лежит обеспечение вполне определенных показателей по выполнению, колебательности и точности системы автоматического управления, т.е. получение технически оптимального переходного процесса.
СПР имеют следующие достоинства:
1.
2.
3.
4.
5.
Основной недостаток - некоторый проигрыш по быстродействию.
ω* |
iя* |
uу |
eя |
mс |
ep |
iя |
m |
Фо(р) |
W01(p) |
Рисунок 10 Двухконтурная схема подчиненного регулирования скорости электропривода постоянного тока |
Ф1 |
Ф2 |
Рисунок 11 Функциональная схема САР скорости |
7
7.1
Величина Тμ является "базовой" при расчете СПР, для которых характерно, что динамические свойства системы не зависит от параметров объекта регулирования и определяется только величиной постоянной времени Тμ фильтра, установленного на выходе регулирующей части системы управления. Таким образом , в стандартных системах регулирования величина Тμ является единственным средством воздействия на систему управления.
С одной стороны уменьшение Тμ приводит к увеличению быстродействия и снижению статической и динамической ошибок по скорости при приложении внешних возмущающих воздействий, с другой стороны величина этой постоянной времени должна быть достаточно большой, чтобы обеспечить высокую помехозащищенность системы, ограничение тока якоря на допустимом уровне и устойчивость работы САУ с учетом дискретность тиристорного преобразователя.
Следовательно фильтр с постоянной времени Тμ должен реально присутствовать в САУ электроприводом.
В реальных САУ с подчиненным регулированием параметров величина Тμ лежит в пределах 0,004-0,01 с.
Для нашей системы выберем Тμ = 0,007 с.
7.2
7.2.1
iя |
iя* |
uу |
eя |
ep |
Ф |
ЯЦ |
ТП |
РТ |
iя |
ДТ |
Рисунок 12 Структурная схема контура регулирования тока якоря |
7.2.2
При синтезе регулятора внутренняя обратная связь оп ЭДС не учитывается.
Передаточная функция регулятора тока, найденная по условию настройки на модульный оптимум:
Тi1 = Tэ = 0,07с;
При выборе данной передаточной функции регулятора тока замкнутый контур тока будет описываться передаточной функцией фильтра Баттерворта II порядка:
Рисунок 13 Реакция контура тока на ступенчатый задающий сигнал: 1 - без учета обратной связи по ЭДС; 2 - с учетом обратной связи по ЭДС. |
i |
σ = 4,3% |
t |
iя* |
1 |
Δiя2 уст |
Δiя уст |
|
7.2.3
Действие ЭДС якоря приводит к погрешности регулирования тока. Появляется астатизм контура по задающему воздействию. При единичном задании на ток статическая ошибка составит:
iя |
uу |
ep |
eя |
ЯЦ |
iя* |
ТП |
РТ |
ДТ |
Ф |
ДТ |
ДЭ |
iя |
Рисунок 14 Структурная схема контура регулирования тока якоря с компенсирующей связью по ЭДС |
7.2.4
ЭДС якоря двигателя, в отличие от тока якоря и скорости, недоступна для прямого измерения. Датчик косвенного измерения ЭДС якоря использует сигналы датчика тока якоря и датчика напряжения на якоре двигателя. Связь между током якоря, напряжением якоря и ЭДС якоря устанавливает уравнение электрического состояния равновесия в якорной цепи. В операторном виде оно имеет вид:
uя |
iя |
eя' |
от ДН |
к звену компенсации ЭДС |
от ДТ |
Рисунок 15 Реализация датчика ЭДС |
7.3 РАСЧЕТ
Рассмотрим реализацию управляющей части контура тока якоря в аналоговой системе автоматического управления электроприводом на базе операционных усилителей.
Принципиальная схема регулятора тока и цепи компенсации ЭДС представлена на рис. 16.
Регулятор реализован на усилителе DA1, звено компенсации ЭДС - на усилителе DA2. Усилитель DA3 предназначен для суммирования сигналов в датчике ЭДС.
Для расчета элементов схемы по известным значениям параметров в относительных единицах используем базисные величины:
Iбр = 0,5 мА - базисный ток регулирования принимаем, как рекомендуется в [5].
Uбр = 10 В - базисное напряжение регулирования.
Рисунок 16 Принципиальная схема управляющей части контура тока |
Принимаем величины сопротивлений
Емкость фильтров в цепи задания и обратной связи по току:
Емкость в цепи обратной связи усилителя DA1:
Сопротивления в цепи обратной связи усилителя DA1:
Емкость во входной цепи усилителя DA2
Сопротивление в обратной связи усилителя DA2:
Емкость фильтра на входе DA3:
Параметры элементов на входе форсирующего звена на входе DA3:
8
8.1
Согласно требованиям, предъявляемым к электроприводу, система регулирования скорости выполняется однократной (см. п. 6). Структурная схема контура скорости представлена на рис. 17. Контур регулирования тока настроен на модульный оптимум с наличием компенсации по ЭДС якоря - рассматриваем как фильтр Баттерворта II порядка.
ω |
ω* |
iя |
mc |
`m |
КТ |
МЧ |
РС |
iя |
ДС |
iя* |
Рисунок 17 Структурная схема контура регулирования скорости |
8.2
В однократной САР скорости, по условия настройки на модульный оптимум, регулятор скорости имеет передаточную функцию пропорционального звена:
, где
,
φ = 1, т.к. Ф = ФN = const.
Передаточная функция замкнутого контура скорости при настройке на модульный оптимум представляет собой фильтр Баттерворта III порядка:
Реакция контура скорости на скачок задания на скорость представлена на рис. 18. такой процесс имеет место при mc = 0 (на холостом ходу). Однократная САР обладает астатизмом по возмущающему воздействию, поэтому появление нагрузки приведет к статической ошибке по скорости. При ω* = 1 и mc = 1 (что соответствует в абсолютных единицах Mc =MN) статическая ошибка будет равна:
8.3
Рисунок 19 Принципиальная схема регулятора скорости |
ω,m |
ω* |
8 % |
ω |
mc |
Δωуст |
t |
Рисунок 18 Реакция контура скорости на скачок задающего и возмущающего воздействия |
Принимаем:
Сопротивление в цепи обратной связи DA4:
9
9.1
ω* |
ωзи* |
Q |
Q |
НЭ |
к регулятору скорости |
Рисунок 20 Структурная схема ЗИ |
Принцип действия ЗИ
ωзи* |
Δω |
ωнэ |
ω* |
t |
t |
t |
t |
|
9.2
Темп ЗИ представляет собой величину ускорения электропривода в относительных единицах:
Принимаем постоянную времени интегратора Ти = 0,25 с. При этом величина ограничения нелинейного элемента составит:
В абсолютных единицах ограничение соответствует 10 В.
Установившийся динамический момент при разгоне с темпом А:
Проверим выполнение условия:
Из пункта 3:
Установившаяся динамическая ошибка по скорости при разгоне с темпом А:
9.3 РАСЧЕТ
Принципиальная схема ЗИ представлена на рис. 22.
Нелинейный элемент реализуется на операционном усилителе DA7 за счет включения в обратную связь пары стабилитронов VD6 и МВ7. Интегратор реализуется на операционном усилителе DA6. Усилитель DA5 предназначен для инвертирования сигнала.
Принимаем:
Коэффициент усиления линейной зоны нелинейного элемента принимаем равным 100.
Емкость в обратной связи интегратора:
Рисунок 22 Принципиальная схема ЗИ |
10
ЛИТЕРАТУРА
1.
2. А.М. Зюзев и др. - Екатеринбург: УГТУ, 1995. - 56с.
3.
4.
5.