Градиентные методы

Доклад по математическому моделированию

На тему “Градиентные методы”

Студента группы ЭФП-21

Мельникова Олега

Курск 2004 год

1. Общие сведения.

Наиболее распространенные и эффективные методы приближенного решения задачи безусловной оптимизации

f(x) ® min,

(1)

где f: Rm ® R, укладываются в следующую схему. Начиная с некоторого x0 Î Rm, строится последовательность {xn} Ì Rm такая, что

f(xn+1) < f(xn)

(2)

при всех n Î N. Такие последовательности иногда называют релаксационными, а методы построения релаксационных последовательностей — итерационными методами или методами спуска. Последовательность, удовлетворяющую (2), строят в надежде, что уменьшая на каждом шаге (переходе от xn к xn+1) значение функции, мы приближаемся к минимуму (по крайней мере, локальному).

Будем говорить, что метод, начиная с данного x0 Î Rm,

а) условно сходится, если последовательность {xn} релаксационна и

f ¢(xn) ® Q при n ® ¥;

б) сходится, если

xn ® x* = argmin f(x) при n ® ¥;

в) линейно сходится (или сходится со скоростью геометрической прогрессии, или имеет первый порядок сходимости), если при некоторых C > 0 и q Î [0, 1)

||xn - x*|| £ Cqn;

(3)

г) сверхлинейно сходится, если для любого q Î (0, 1) и некоторого (зависящего от q) C выполнено неравенство (3);

д) квадратично сходится (или имеет второй порядок сходимости), если при некоторых C > 0 и q Î [0, 1) и всех n Î N

||xn - x*|| £ Cq2n.

Выше уже отмечалось, что если x не является точкой локального минимума функции f, то двигаясь из x в направлении, противоположном градиенту (еще говорят, в направлении антиградиента), мы можем локально уменьшить значение функции. Этот факт позволяет надеяться, что последовательность {xn}, рекуррентно определяемая формулой

xn+1 = xn - af ¢(xn),

(4)

где a - некоторое положительное число, будет релаксационной.

К этой же формуле приводит и следующее рассуждение. Пусть у нас есть некоторое приближение xn. Заменим в шаре B(xn, e) с центром в точке xn функцию f ее линейным (вернее, афинным) приближением:

f(x) » j(x) =(def) f(xn) + (f ¢(xn), x - xn)

(функция j аппроксимирует f в окрестности точки xn с точностью o(x - xn). Разумеется, (линейная) безусловная задача j(x) ® min неразрешима, если f ¢(xn) ¹ Q. В окрестности же B(xn, e) функция j имеет точку минимума. Эту точку естественно взять за следующее приближение xn+1.

2. Градиентный метод с постоянным шагом.

В общем случае число a в формуле (4) может на каждом шаге (т. е. для каждого n) выбираться заново:

xn+1 = xn - anf ¢(xn).

(5)

Именно методы, задаваемые формулой (5), называются градентными. Если an = a при всех n, то получающийся метод называется градиентным методом с постоянным шагом (с шагом a.)

Поясним геометрическую суть градиентного метода. Для этого выберем способ изображения функции с помощью линий уровня. Линией уровня функции f (изолинией) называется любое множество вида {x Î Rm: f(x) = c}. Каждому значению c отвечает своя линия уровня (см. рис. 1).

Рис. 1.

Геометрическая интерпретация градиентного метода с постоянным шагом изображена на рис. 2. На каждом шаге сдвигаемся по вектору антиградиента, "уменьшенному в a раз".

Рис. 2.

Изучим сходимость градиентного метода с постоянным шагом на примере функции

f(x) = |x|p,

где p > 1 (случай p £ 1 не рассматриваем, поскольку тогда функция f не будет гладкой, а мы такой случай не исследуем). Очевидно, задача (1) с такой функцией f имеет единственное решение x* = 0. Для этой функции приближения xn градиентного метода имеют вид:

xn+1 = xn - ap|xn|p-1sign xn.

(6)

Пределом этой последовательности может быть только 0. Действительно, если x** = limn®¥ xn ¹ 0, то, переходя к пределу в (6) при n ® ¥, получаем противоречащее предположению x** ¹ 0 равенство

x** = x** - ap|x**|p-1sign  x**,

откуда x** = 0. Очевидно также, что если x0 = 0, то и xn = 0 при всех  n.

Покажем, что если p < 2, то при любом шаге a > 0 и любом начальном приближении x0 (за исключением не более чем счетного числа точек) приближения (6) не являются сходящимися. Для этого заметим, что если 0 < |xn| < (2/ap)1/2(2-p), то

|xn+1| > |xn|.

(7)

Поэтому, если xn не обращается в нуль, то она не может сходиться к нулю и, следовательно, не может сходиться вообще.

Таким образом, осталось доказать (7). В силу (6)

|xn+1| = |xn - ap|xn|p-1 ·sign xn| = |xn|·| 1 -ap|xn|p-2·sign xn|.

Остается заметить, что если 0 < |xn| < (2/ap)1/(2-p), то  |1 - ap|xn|p-2·sign  xn| > 1, что и требовалось доказать.

Если p = 2, т. е. f(x) = x2, то (6) имеет  вид

|xn+1| = |xn|·|1 - 2a|.

Поэтому, если a Î (0, 1), то |1 - 2a| < 1, а следовательно,

|xn+1| = |1 - 2a|n+1·|x0| ® 0 при n ® ¥.

Если же a ³ 1, то

|xn+1| ³ |xn|,

и последовательность {xn}, начинающаяся из ненулевой начальной точки, расходится.

Таким образом, есть функции, для которых градиентный метод не сходится даже при сколь угодно малом шаге a и есть функции, для которых он сходится только при достаточно малых шагах. В следующих пунктах рассмотрим ряд теорем о сходимости градиентного метода.

3. Теорема об условной сходимости градиентного метода с постоянным шагом.

Пусть в задаче (1) функция f ограничена снизу, непрерывно дифференцируема и, более того, f ¢ удовлетворяет условию Липшица:

||f ¢(x) - f ¢(y)|| £ L ||x - y|| при всех x, y Î Rm.

Тогда при a Î (0, 2/L) градиентный метод с постоянным шагом условно сходится.

Д о к а з а т е л ь с т в о.  Положим zn = -af ¢(xn) и обозначим f(xn + tzn) через j(t).

Тогда

j¢(t) = (f ¢(xn + tzn), zn)

и поэтому по формуле Ньютона — Лейбница для функции j

f(xn+1) - f(xn) = f(xn + zn) - f(xn) = j(1) - j(0) =

=

ò

1 0

j¢(s) ds =

ò

1 0

(f ¢(xn+ szn), zn) ds.

Добавив и отняв (f ¢(xn), zn) = ò01(f ¢(xn), zn) ds и воспользовавшись неравенством (x, y) £ ||x|| · ||y||, получим

f(xn+1) - f(xn) = (f ¢(xn), zn) +

ò

1 0

(f ¢(xn + szn) - f ¢(xn), zn) ds £

£ (f ¢(xn), -af ¢(xn)) +

ò

1 0

||f ¢(xn + szn) - f ¢(xn)|| · ||zn|| ds.

Учитывая условие Липшица для f ¢, эту цепочку можно продолжить:

 f(xn+1) - f(xn) £ -a||f ¢(xn)||2 + L ||zn||2

ò

1 0

s ds =

= - a||f ¢(xn)||2 +

La2


2

||f ¢(xn)||2 = -a||f ¢(xn)||2

æ è

1 -

La


2

ö ø

.

(8)

Поскольку 1 - La/2 > 0, последовательность {f(xn)} не возрастает и, следовательно, релаксационность {xn} доказана. А так как в силу условий теоремы f еще и ограничена снизу, последовательность {f(xn)} сходится. Поэтому, в частности, f(xn+1) - f(xn) ® 0 при n ® ¥. Отсюда и из (8) получаем

 ||f ¢(xn)||2 £ a-1

æ è

1 –

La


2

ö ø

–1

[f(xn) - f(xn+1)] ® 0 при n ® ¥.

Подчеркнем, что теорема не гарантирует сходимости метода, но лишь его условную сходимость, причем, локальную.