Химия платины и ее соединений

Московский Государственный Университет им. М. В. Ломоносова

Химический факультет

Кафедра общей химии

Курсовая работа

Студента 2 курса 226 группы

Янюшина Александра Михайловича

ХИМИЯ ПЛАТИНЫ И ЕЕ СОЕДИНЕНИЙ

                              

Москва – 2002

ОГЛАВЛЕНИЕ

 TOC o "1-3" h z Введение. PAGEREF _Toc6767191 h 2

Основные свойства. h 3

Простые вещества. h 4

Соединения Pt (0) h 5

Соединения Pt (II) h 5

Соединения Pt (IV) h 8

Соединения Pt (VI) h 10

Заключение. PAGEREF _Toc6767198 h 12

Список литературы.. h 13

Введение

          Платина – один из самых ценных благородных металлов, обладающий рядом  важных свойств, благодаря которым используется не только в ювелирной промышленности, но и во многих отраслях промышленности. Использование платины во многих химических технологиях делает актуальным более глубокое исследование ее физических и химических свойств.

Платина - один из самых важных элементов из всего платинового ряда из-за максимальной среди них химической инертности, а также из-за ценнейших свойств платины как мощ­ного катализатора многих химических процессов.

Основные свойства

          Платина – серовато-серый металл, относительно мягкий, очень тягучий, ковкий, тугоплавкий. В особых условиях образует губчатую платину (с сильно развитой поверхностью), платиновую чернь (тонкодисперсный порошок) и коллоидную платину. Благородный металл – занимает последнее (самое электроположительное) место в электрохимическом ряду напряжений. Легко сплавляется с платиновыми металлами (кроме рутения и осмия), а также с Fe, Co, Ni, Cu, Au и другими, с трудом сплавляется с Sb, Bi, Sn, Pb, Ag. Химически весьма пассивный – не реагирует с водой, кислотами (за исключением «царской водки»), щелочами, гидратом аммиака, монооксидом углерода. Переводится в водный раствор хлороводородной кислотой, насыщенной Cl2. При нагревании окисляется кислородом, галогенами, серой, при комнатной температуре – тетрафторидом ксенона. Губчатая платина и платиновая чернь активно поглощают значительно количество H2, He, O2. В природе встречается в самородном виде (в сплавах с Ru, Rh, Pd, Os, Ir).

Платина Pt характеризуется следующими константами:                

Атомная масса...............................................    195,09

Валентные электроны ....................................   5d96s1

Металлический радиус атома, им ..... ...........   0,138

Условный радиус иона, нм:

Э2+.........................................................    0,090

Э4+ ........................................................    0,064

Энергия ионизации Э0 è Э+, эВ .................    8,9

Содержание в земной коре, % (мол. доли)...   5*10-8

Для платины наиболее характерна степень окисления +4. Известны также соединения Pt (VI). Для платины наиболее устойчивы координационные числа 4 (тетраэдр или квадрат) и 6 (октаэдр). Степени окисления элемента и отвечающие им пространственные конфигурации комплексов приведены в табл. 1.

Таблица 1. Степени окисления и структурные единицы платины

Степень окисления

Координационное число

Структурная единица

Примеры соединений

0

4

Тетраэдр

Pt(O2)[Р(С6Н5)3]2

+2

4

Тетраэдр

+2

4

Квадрат

[Pt(NH3)4]2, [Pt(CN)4]2-, [PtCl4]2-, [Pt(NH3)2 Cl2 ]°, PtO

+2

6

Октаэдр

+4

6

Октаэдр

Pt(NH3)6]4+, [PtCl6]2-,  [Рt(NН3)2Сl4

+6

6

Октаэдр

PtF6

Платина относится к числу редких элементов, встречается в медно-никелевых рудах, а также в самородном состоянии в виде сплавов с небольшим содержанием других металлов (Ir, Pd, Rh, Fe, иногда Ni, Сu и др.). Важным источником платины металлов являются сульфидные полиметаллические медно-никелевые руды.

Простые вещества

В виде простых веществ платина — блестящий белый металл с серебристым оттенком, кристаллизуется в кубической гранецентрированной решетке.

Важнейшие константы Pt представлены ниже:

          Пл., г/см………………………………… 21,46

          Т. пл., оС  ………………………………… 1772

          Т. кип., оС ………………………………… ~3900

Электрическая проводимость (Hg=1)…… 10

DHовозг,298 , кДж/моль …………………….. 556

Sо298 , Дж/(К*моль) ……………………… 41,5

jо 298 Э2+ + 2е = Э, В …………………….. +1,19

По сравнению с другими платиновыми металлами платина несколько более реакционноспособна. Однако и она вступает в реакции лишь при высокой температуре (часто при температуре красного каления) и в мелкораздробленном состоянии. Получающиеся при этом соединения обычно малостойки и при дальнейшем нагревании разлагаются.

Для платины наиболее характерно поглощение кислорода. Большое значение платина имеет как катализатор окисления кислородом аммиака (в произвол HNO3), водорода (для очистки О2 от примеси Н2) и в других процессах каталитического окисления.

В электрохимическом ряду напряжений платина расположена после водорода и растворяется при нагревании лишь в царской водке:

                          0                                         +4  

3Pt + 4HNO3 + 18НСl = ЗН2[РtCl6] + 4NO + 8H2O

При сплавлении с щелочами, цианидами и сульфидами щелочных металлов в присутствии окислителей (даже O2) платина переходит в соответствующие производные анионных комплексов.

Платина используется для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов химических производств, для термометров сопротивления и термопар, а также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электрохимического производства надсерной кислоты и перборатов. Платина применяются в ювелирном деле.

Соединения Pt (0)

Как и у других d-элементов, нулевая (а также отрицательная) степень окисления у платины проявляется в соединениях с лигандами s-донорного и p-акцепторного типа: СО, PF3, CN-. При этом при электронной конфи­гурации центрального атома d10 строение комплексов с лигандами сильного поля чаще всего отвечает структуре тетраэдра.

Для платины, как элемента VIII группы (при электронной конфигурации d8 – d10 ) из­вестны комплексы, в которых роль лигандов играет молекула О2, например Pt(O2)[Р(С6Н5)3]2 .

Молекула О2 — лиганд p-типа (подобно CN-, CO, N2, NO). Его присоеди­нение к комплексообразователю реализуется за счет донорно-акцепторного и дативного взаимодействия М—О2 участием s-, p- и p*-орбиталей молекулы O2.

Такие соединения по аналогии с нитрогенильными и карбонильными соединениями можно назвать оксигенильными. Оксигенильные соединения - хорошие передатчики кислорода и катализаторы; за счет активации О2 являются хорошими окислителями уже при обычных условиях. Так, Pt[Р(С6Н5)3]4 поглощает кислород:

Pt[Р(С6Н5)3]4 + О2 = Pt(O2)[Р(С6Н5)3]2 + 2Р(С6Н5)3

а образовавшийся  Pt(O2)[Р(С6Н5)3]2 является окислителем, например:

        0                                         +2

Pt(O2)[Р(С6Н5)3]2 + 2NO2 = Pt(NO3)2[Р(С6Н5)3]2

при гидролизе дает пероксид водорода.

Активация молекулярного кислорода за счет комплексообразования имеетбольшое биохимическое значение. Классическим примером является присоеди­нение кислорода к гемоглобину.

Соединения Pt (II)

Для Pt (II) типичны диамагнитные плоскоквадратные комплексы, что объясняется значительной величиной параметра расщеп­ления D, как у любого d-элемента 5-го и 6-го периодов.

При большом значении D в октаэдрическом комплексе два элект­рона оказываются на сильно разрыхляющих молекулярных s*d-орбиталях. Поэтому энергетически выгодней становится потеря этих электро­нов и переход Pt (II) в степень окисления +4 либо перерож­дение октаэдрического комплекса в плоскоквадратный. Распределение восьми электронов на орбиталях плоскоквадратного комплекса оказы­вается энергетически выгоднее, чем на молекулярных орбиталях окта­эдрического комплекса. Сосредоточение восьми электронов на четырех молекулярных орбиталях определяет диамагнетизм комплексов плоскоквадратного строения.

Соединения Pt (II) интенсивно окрашены. Структурной единицей соединений Pt (II) является квадрат. Так, в кристаллах PtO (рис. 1) атомы Pt окружены четырьмя атома­ми кислорода по вершинам четырехугольника. Эти квадраты соединены сторо­нами в цепи, которые перекрещиваются под углом 90°. Аналогично построены  кристаллы PtS.

Рис.  1.   Структура PtO и PtS

Дихлорид платины имеет совершенно другое строение. Красно-черные кристаллы PtCl2 состоят из октаэдрических кластерных группировок Pt6Cl12.

Хлориды платины могут быть получены прямым синтезом:

Pt + Cl2 = PtCl2  (t = 500 0C)

Pt + 2Cl2 = PtCl4 (t = 250 0C)

Дихлорид PtCl2 можно получить и диссоциацией PtCl4, а также нагреванием платинохлористоводородной кислоты:

3О)2РtCl6*nH2O = PtCl2 + НС1 + (n + 2)Н2О + Cl2 (t > 300 0C)

Генетическую связь безводных хлоридов платины передает следу­ющая схема:

                                            370 °C         475 °C       581 °C      583 °C                           

PtCl4 è РtC13 è PtCl2 è PtCl è Pt

Обращает на себя внимание очень малая величина температур­ного интервала, разделяющего области существования хлоридов пла­тины различного состава. Это одно из специфических свойств соеди­нений Pt, имеющих в своей основе высококовалентную кинетически инертную химическую связь.

Оксиды и гидроксиды Pt (II) черного цвета, в воде не растворяются; PtO устойчив также по отношению к кислотам. PtS в кислотах не раство­ряется.

Из катионных комплексов Pt (II) очень устойчивы и легко образуются амминокомплексы [Pt(NH3)4]2+

PtCl2 + 4NH3 = [Pt(NH3)4]Cl2

Известно также большое число производных катионных комплексов Pt (II) с органическими лигандами. Еще более устойчивы тетрацианидоплатинат (II) [Pt(CN)4]2--иoны (для последнего b4=1*1041). Известен также H2[Pt(CN)4]*3H2O; в водных растворах —это двухосновная сильная кислота (называемая платиносинеродистой).

Платинаты (II) очень много­образны и устойчивы. Например, комплексные галогенйды Pt (II) характеризуются следующими константами устойчивости:

    Ион ............. [PtCl4]2- [PtBr4]2- [PtI4]2-

lg b..............  16,0       20,5       -30

Рис 2. Структура K2[PtCl4]

Соли М2[PtС14] (красного цвета) образуются при взаимодействии соединений Pt (II) в соляной кислоте с соответствующими   солями   щелочных металлов. Наиболее важны растворимые в воде K2[PtCl4] и Na2[PtCl4] (рис. 2), являющиеся исходными веществами для синтеза различных соединений платины.

Известны также соединения, в которых Pt (II) входят одновре­менно в состав и катиона, и аниона, например [Рt(NН3)4][РtСl4]. Это соедине­ние (зеленого цвета) осаждается при смешении растворов [Рt(NН3)4]Сl2 и

K2[PtCl4]:

[Pt(NH3)4]Cl2 + K2[PtCl4] = [Pt(NH3)4][PtCl4] + 2KC1

Наряду с катионными и анионными комплексами весьма разнооб­разны нейтральные комплексы Pt (II) типа [Pt(NH3)2Х2] (где Х = С1-, Вг-, NO2-). Для соединений этого типа характерна геометри­ческая (цис-транс) изомерия. Например, составу [Рt(NН3)4С12] отвеча­ют два соединения, которые отличаются свойствами, в частности ок­раской: цис-изомер — оранжево-желтый, транс-изоиер — светло-жел­тый. Цис- и транс-изомеры всегда имеют несколько (а иногда и сильно) различающуюся растворимость в воде, кислотах, а также кинетические и термодинамические характеристики.

В отличие от транс-изомера, цис-изомер обладает ярко выраженной противораковой физиологической активностью. Существенно различ­ны и способы получения этих изомеров. Цис-изомер образуется при замещении двух хлорид-ионов молекулами аммиака в тетрахлороплатинат (II)-комплексе:

K2[PtCl4] + 2NH3 = [Pt(NH3)2Cl2] + 2КС1

                                 циc-изомер

Транc-изомер получается при замещении двух молекул аммиака на хлорид-ионы в комплексе тетрааммин-платина (II):

[Pt(NH3)4]Cl2 +2HC1 = [Pt(NH3)2Cl2] + 2NH4C1

                     транс-изомер

Для понимания направления течения реакций замещения лигандов в комплексах важное значение имеет принцип транс-влияния («Поведение комплексов зависит от трансзаместителей»), установленный И. И. Черняевым (1926). Согласно этому принципу некоторые лиганды облегчают замещение лигандов, находящихся с ними в транс-положении. Таким образом, при синтезе соединений платины играет важную роль не только природа реагентов, но и порядок их смешения, временные и концентрационные соотношения: в зависимости от условий синтеза мо­гут быть получены изо­меры положения.

Трансзаместители находятся на линии (координате) проходящей через центральный атом, цисзаместители находятся как бы сбоку от центрального атома — на линии (координате), не прохо­дящей через центральный атом.

Экспериментально установлено, что для соединений Pt (II) транс-влияние лигандов увеличивается в ряду

Н2О < NH3 < ОН- < С1- < Br- < NCS-, I- < NO2 < СО, CN-

Принцип транс-влияния сыграл выдающуюся роль в развитии синтеза комплексных соединений.

Одним из хорошо изученных комплексов платины, носящих имя его открывателя, является соль Цейзе K[PtCl32H4)]. Это окрашен­ное в желтый цвет соединение было синтезировано датским фармацев­том Цейзе еще в 1827г. Соль Цейзе — одно из первых синтетически полученных металлоорганических соединений; одним из лигандов в ко­ординационной сфере платины (II) здесь является этилен (донорные свойства проявляет двойная связь Н2С==СН2).

Соединения Pt (IV)

Степень окисления +4 харак­терна для платины. Для Pt (IV) известны коричневые (разных оттенков) оксид PtO2, гидроксид Pt(OH)4 (правильнее PtO2*nH2O), галогениды PtHal4, сульфид PtS2 и многочисленные производные ее катионных, нейт­ральных и анионных комплексов.

Окислы Pt тер­мически неустойчивы и при нагревании диссоциируют.

PtO2 = Pt+O2

Под действием молекулярного водорода окислы Pt вос­станавливаются до металла.

Координационное число Pt (IV) равно шести, что отвеча­ет октаэдрической конфигурации комплексов. Последние диамагнит­ны, имеют следующую электронную конфигурацию: s12p° 6d

Бинарные соединения Pt (IV) получают прямым взаимодействием простых веществ при нагревании или путем разложения соответствую­щих комплексных соединений. У бинарных соединений Pt (IV) кислотные свойства преобладают над основными. При растворении гидроксида платины (IV) PtO2*nH2O в кислотах и щелочах образуются комплексы анионного типа, напри­мер:

Pt(OH)4 + 2NaOH = Na2[Pt(OH)6]

Pt(OH)4 + 2НС1 = Н2[РtС16] + 4Н2O

Для тетрагалогенидов PtHaI4 очень характерно взаимодействие с галогеноводородными кислотами и основными галогенидами с образо­ванием комплексов типа [PtHal6]2- (Hal = Cl, Br, I):

2HC1 + PtCl4 = Н2[РtСl6]

 2NaCl + PtCl4 = Nа2[РtС16]

Ионы [PtHal6]2- (за исключением [PtF6]2-) очень устойчивы. Так, при действии AgNO3 на растворы гексахлороплатинатов (IV) образует­ся светло-бурый осадок Ag2[PtCl6], а не AgCl. В противоположность Na2[PtCl6] гексахлороплатинаты (IV) К+, Pb+, Сs+ и NH4+ плохо раство­ряются в воде и выделяются в виде желтых осадков, что используется для открытия указанных ионов в аналитической практике.

Из соединений платины наиболее важным для практики является платинохлористоводородная кислота — распространенный  реактив, обычно используемый для приготовления других соединений платины. Твердая H2PtCl6 представляет собой красно-коричневые кристаллы. Растворы ее окрашены в желтый цвет. Хотя соли этой кислоты с мно­гозарядными катионами растворимы, ионы K+, Rb+, Cs+ и NH4+ об­разуют с анионом PtCl62-  малорастворимые соединения, поэтому пла­тинохлористоводородная кислота используется как реактив на тяжелые щелочные элементы:

H2PtCl6 + 2КС1 = K2PtCl6 + 2НС1

Получают ее выпариванием растворов продуктов взаимодейст­вия PtCl4 с соляной кислотой или растворения платины в царской водке.

3Pt + 18HCl + 4HNO3 = 3H2[PtCl6] + 4NO + 8H2O

Исходя из Н2[РtС16] можно перейти практически к любому другому соединению платины. Уже приведены реакции получения из Н2[РtС16] таких веществ, как PtCl4, PtCI2, металлической платины и др. Интересный процесс протекает при кипячении раствора Н2[РtС16] со щелочью. При этом образуется гексагидроксоплатинат щелочного металла:

Н2[РtС16] + 8КОН = K2[Pt(OH)6] + 6КС1 + 2Н2O

Затем подкислением раствора K2[Pt(OH)6] минеральной кисло­той можно получить белый осадок гексагидроксоплатиновой кислоты:

[Pt(OH)e]2- + 2Н+ = H2[Pt(OH)6]

В этом соединении соседствуют протоны и ионы гидроксила, но реакции нейтрализации не происходит — настолько прочно связывает Pt(IV) лиганды — ионы ОН-, находящиеся во внутренней координа­ционной сфере. Здесь важнее всего не термодинамическая, а кинети­ческая устойчивость соединений платины.

Аммонийную соль (NH4)2PtCl6 используют для выделения плати­ны из растворов при ее переработке, поскольку дальнейший термолиз этой соли приводит к получению металлической платины (в виде мелкодисперсного черного порошка с сильно развитой поверхностью — так называемой платиновой черни):

(NH4)2PtCl6 = Pt + 2Cl2 + 2NH4Cl

Помимо [PtX6]2- (X = Cl-, Br-, I-, CN-, NCS-, ОН-) известны много­численные анионные комплексы с разнородными лигандами, напри­мер, ряда:    М2[Рt(ОН)6], M2[Рt(ОН)5С1], M2[Pt(OH)4Cl2], М2[Рt(ОН)3С13], M2[Pt(OH)2Cl4], M2[Pt(OH)Cl5], М2[РtC16]. Некоторые из платинат (IV)-комплексов этого ряда могут быть получены при гидролизе PtCl4:

PtCl4 + 2НОН = H2[Pt(OH)2Cl4]

или действием щелочей на хлороплатинаты (IV):

Na2[PtCl6] + 6NaOH = Na2[Pt(OH)6] + 6NaCl

О разнообразии комплексов Pt (IV) можно судить также по следующему    ряду производных:    [Рt(NН3)6]С14,    [Pt(NH3)5Cl]Cl3, [Pt(NH3)4Cl2]Cl2,   [Рt(NH3)3С13]С1,   [Рt(NН3)2С14], K[Pt(NH3)Cl5], К2[РtС16].

Характер координации хлорид-иона в этих соединениях можно легко установить  химическим  путем.  Так,  при  взаимодействии  растворов [Рt(NН3)6]Сl4 и AgNO3 осаждаются 4 моль AgCl в расчете на 1 моль Pt. Из растворов [Рt(NН3)5С1]С13 и [Рt(NН3)4С12]С12 выделяются соответственно 3 и 2 моль AgCl, а из раствора [Рt(NН3)2С14] хлорид серебра осаждается только в результате долгого стояния раствора при нагревании. В соответствии с харак­тером ионизации меняется и электрическая проводимость растворов. Понятно, что при одинаковой молярной концентрации максимальной электрической проводимостью обладает раствор [Pt(NH3)6]Cl4, минимальной — раствор [Pt(NH3)2Cl4] (рис. 3).

Для соединений состава [Pt(NH3)4Cl2]Cl2 и [Pt(NH3)2Cl4] характерна геометрическая изомерия: цuc-[Pt(NH3)2Cl4] имеет оранжевую, а транс-[Pt(NH3)2Cl4] — желтую окраску. Расположение транс-комплексов [Pt(NH3)2Cl4] в кристалле показано на рис. 4.

Рис. 3. Молярная электрическая проводи­мость соединений Pt (IV) в зависимости от их состава

Р и с. 4. Строение крис­талла [Pt(NH3)2Cl4]

Соединения Pt (VI)

Все изученные окислы платины термически неустойчивы, но оче­видно, что чем выше проявляемая платиной в окислах степень окисле­ния, тем сильнее выражен кислотный характер окисла. Так, при элект­ролизе щелочных растворов с использованием Pt-электродов на ано­де получается трехокись РtO3, которая с КОН дает платинат состава К2О*ЗPtO3, что доказывает способность платины (VI) проявлять кис­лотные свойства.

Платина, подобно ряду других 5d-элементов, образует гексафторид PtF6. Это летучее кристаллическое вещество (т. пл. 61° С, т. кип. 69° С) темно-красного цвета, получают его сжиганием платины во фторе.

Pt4+ + 4F- = PtF4 , PtF4 + F2 = PtF6 .

Изучение свойств гексафторида платины — летучего вещества, образующего красно-коричневые пары, — привело к важным послед­ствиям в развитии неорганической химии. В 1960 г. Бартлетту, рабо­тавшему в Ванкувере (Канада), удалось показать, что PtF6 может от­щеплять фтор с образованием пентафторида, который затем диспропорционирует:

PtF6 = PtF5 + 0,5F2, 2PtF5 = PtF6+PtF4.

Побочным результатом этих опытов было обнаружение на стен­ках реакционного сосуда коричневого налета, оказавшегося оксигенильным производным шестифтористой платины:

PtF6 + O2 = [O2]+[PtF6]-

Образование этого соединения доказывало, что PtF6 является сильнейшим окислителем, способным оторвать электрон от молеку­лярного кислорода. Это наблюдение затем привело Бартлетта к мыс­ли о возможности окислить шестифтористой платиной атомарный ксе­нон, что положило начало химии фторидных и кислородных соедине­ний инертных газов.

Важно отметить, что PtF6 — сильнейший окислитель, по-видимо­му превосходящий по окислительному действию молекулярный фтор. Устойчивость гексафторидов уменьшается в ряду WF6 > ReF6 > OsF6 > IrF6 > PtF6 >. Особо неустойчивый PtF6 относится к числу наиболее сильных окислителей (сродство к электрону 7 эВ), является фторирующим агентом. Так, он легко фторирует ВгF3 до BrF5, бурно реагирует с металлическим ураном, образуя UF6. Это можно объяснить тем, что связь Pt—F в PtF6 менее прочна, чем связь F—F в f2. Это делает PtFe источником атомарного фтора — вероятно, самого сильного из существующих химических окислителей действующих при более мягких условиях (при более низкой темпера­туре), чем fs и многие другие фторокислители.

Гексафторид платины разлагает воду с выделением кислорода, реагирует со стеклом и окисляет также молекулярный кислород до O2+[PtF6]-. Так как первый ионизационный потенциал молекулярного кислорода O2 è O2+ равен 12,08, т.е. почти как у ксенона (12,13 В), было высказано предположе­ние о возможности образования соединения Xe+[PtF6]-:

Хе + PtF6 = Xe+[PtF6]-

Вскоре это соединение было получено. Xe[PtF6] — кристаллическое вещество оранжевого цвета, устойчиво при 20° С, в вакууме возгоняется без разложения. Синтез Xe[PtF6] ярился началом широких исследова­ний, приведших к получению соединений благородных газов.

Заключение

Химия платины очень объемна, сложна и интересна. Пожалуй, наиболее общим свой­ством ее соединений является узкий температурный интервал их ста­бильности, связанный с высоким поляризующим действием платины и развивающимся при нагревании ее соединений дополнительным эф­фектом поляризации, приводящим к разрушению химических связей и восстановлению металлического состояния платины.

 

Список литературы

1. Н.С. Ахметов. Общая и неорганическая химия, М., 2001.

2. В.И. Спицын, Л.И. Мартыненко. Неорганическая химия, МГУ, 1994.

3. Р.А. Лидин, В.А. Молочко, Л.Л. Андреева. Химические свойства

    неорганических веществ, М., 1996.