Исследование функций преобразования и метрологических характеристик бесконтактных волоконно-оптических датчиков перемещений

Государственный комитет РФ по высшему образованию

Московский государственный институт электроники и математики

Кафедра ЭВА

Лабораторная работа

по курсу "Метрология и измерительная техника"

Исследование функций преобразования и метрологических характеристик бесконтактных волоконно-оптических датчиков перемещений.

Выполнили студенты группы С-45

Голышевский А.

Костарев В.

Куприянов Ю.

Сапунов Г.

Преподаватель

Зак Е.А.

Москва 1998

Цель работы: Освоение методик определения основных метрологических и эксплуатационных характеристик первичных измерительных преобразователей информации на примере бесконтактного волоконно-оптического датчика перемещений.

Используемое оборудование: волоконно-оптический датчик перемещения, специальный штатив с возможностью контроля перемещений, цифровой вольтметр, микрометрический винт, четыре различных типа поверхности.

Алгоритм получения результатов.

Волоконно-оптический датчик подключают к цифровому вольтметру.

Часть 1. Нахождение функции преобразования.

1.      Изменяя расстояние между датчиком и поверхностью, находим положение датчика, при котором напряжение на выходе датчика будет максимальным.

2.      Находим точку перегиба функции преобразования. Для этого измеряем напряжение в нескольких точках при x<xmax, находим, на каком интервале самое большое изменение показаний вольтметра. Точка перегиба - внутри этого интервала.

Расстояние до xmax, мкм

Показания вольтметра, В

Разность соседних показаний, В

0

-300

-600

-900

-1200

-1500

-1800

Дальнейшие измерения расстояния будут вестись относительно точки х0, соответствующей напряжению (      +      )/2 =       В

3.      Находим напряжение в 10 точках, в две стороны от хс шагом 100 мкм. Измерение в каждой точке производится 6 раз.

Результаты измерений и средние значения

x, мкм

U, B

Uср, В

-500

0,24

0,24

0,24

0,24

0,24

0,24

0,24

-400

0,38

0,37

0,37

0,36

0,37

0,37

0,37

-300

0,56

0,56

0,56

0,55

0,56

0,56

0,558333

-200

0,8

0,79

0,79

0,78

0,79

0,79

0,79

-100

1,06

1,04

1,05

1,04

1,05

1,05

1,048333

0

1,36

1,36

1,34

1,33

1,34

1,34

1,345

100

1,64

1,72

1,68

1,62

1,62

1,63

1,651667

200

2

2,01

2

1,9

1,9

1,95

1,96

300

2,25

2,3

2,26

2,2

2,19

2,2

2,233333

400

2,5

2,55

2,52

2,47

2,45

2,46

2,491667

500

2,77

2,74

2,73

2,66

2,66

2,69

2,708333

4.      Для каждого расстояния находим среднеквадратическое отклонение, относительную погрешность и доверительный интервал.

Расчет погрешностей

x, мкм

Среднеквадр. отклонение

Относительная погрешность

Доверительный интервал

-500

0

0,00%

0,000000

-400

0,006324555

1,71%

0,016444

-300

0,004082483

0,73%

0,010614

-200

0,006324555

0,80%

0,016444

-100

0,007527727

0,72%

0,019572

0

0,012247449

0,91%

0,031843

100

0,040207794

2,43%

0,104540

200

0,050990195

2,60%

0,132575

300

0,043665394

1,96%

0,113530

400

0,038686776

1,55%

0,100586

500

0,045350487

1,67%

0,117911

5.      По средним значениям напряжения и с учетом доверительного интервала строим график функции преобразования датчика:

График можно аппроксимировать кубическим полиномом

   ,где коэффициенты определяются по формулам:

где:

j= 0,1... - но­мер экс­пе­ри­мен­таль­ной точ­ки функ­ции пре­об­ра­зо­ва­ния;

n - чис­ло по­лу­чен­ных зна­че­ний функ­ции пре­об­ра­зо­ва­ния (n=11);

Aj - от­клик ВОД при j-ом зна­че­нии вход­но­го па­ра­мет­ра;

i - при­ра­ще­ние вход­но­го па­ра­мет­ра (Dхi=0,1 мм).

Часть 2. Исследование влияния условий (типа поверхности) на функцию преобразования.

Измерения производятся для четырех типов поверхности: белая бумага, черная бумага и текстолит с двух сторон. Измеряем напряжение на выходе датчика в точках от x=0 до значения, при котором напряжение будет максимальным, с шагом 200 мкм.

x, мкм

Тип поверхности

отражающая

белая

черная

текстолит

0

0,37

0,53

0,048

0,35

200

0,43

0,65

0,127

0,35

400

0,47

0,82

0,145

0,355

600

0,575

1,02

0,173

0,36

800

0,7

1,24

0,187

0,365

1000

0,89

1,44

0,2

0,372

1200

1,245

1,66

0,203

0,38

1400

1,62

1,8

0,21

0,38

1600

1,9

1,87

0,21

0,38

1800

2,15

1,93

0,205

0,385

2000

2,4

1,95

0,2

0,38

2200

2,5

1,94

0,19

0,375

2400

2,48

1,93

0,18

0,37

2600

2,47

1,92

Часть 3. Выводы.

Ра­бо­та во­ло­кон­но-оп­ти­че­ско­го дат­чи­ка за­ви­сит от со­стоя­ния по­верх­но­сти ра­бо­чей пла­сти­ны, ее ко­эф­фи­ци­ен­та от­ра­же­ния и сте­пе­ни рас­сеи­ва­ния све­та при от­ра­же­нии от по­верх­но­сти. Функ­ция пре­об­ра­зо­ва­ния дат­чи­ка ин­ди­ви­ду­аль­на для ка­ж­до­го со­че­та­ния дат­чик — по­верх­ность. Раз­мер (дли­на) ра­бо­че­го уча­ст­ка ха­рак­те­ри­сти­ки оп­ре­де­ля­ет­ся рас­сеи­ва­ни­ем све­та от по­верх­но­сти, а угол на­кло­на — ко­эф­фи­ци­ен­том от­ра­же­ния све­та. Дат­чик ха­рак­те­ри­зу­ет­ся пол­ным от­сут­ст­ви­ем влия­ния на объ­ект.

По­греш­ность (аб­со­лют­ная) мик­ро­мет­ра при из­ме­ре­ни­ях со­став­ля­ла 5 мкм. А по­греш­ность вольт­мет­ра — во вто­ром зна­ке по­сле за­пя­той, то есть при из­ме­ре­ни­ях с ме­тал­ли­че­ской пла­сти­ной она со­ста­ви­ла до 0,05 Воль­та. Вольт­метр об­ла­да­ет тре­мя с по­ло­ви­ной раз­ря­да­ми, но слу­чай­ная по­греш­ность из-за не­пре­рыв­но­го из­ме­не­ния по­ка­за­ний в дан­ном слу­чае ока­за­лась вы­ше.