Конус, и все что с ним связано

КОНУС

1.     Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса

Ось конуса

Р

вершина

образующие

Боковая поверхность

r

               

2.     Получение конуса: конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов.

С

С2

С1

А

                       

3.     Сечение конуса: если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник, основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Это сечение называется осевым.

                    

Если секущая плоскость перпендикулярна к оси ОР конуса, то сечение конуса представляет собой круг с центром О1, расположенной на оси конуса.

                              

4.     Площадь поверхности конуса: разверткой боковой поверхности конуса является круговой сектор, радиус которого равен образующей конуса, а длина дуги сектора – длине окружности основания конуса. За площадь боковой поверхности конуса принимается площадь ее развертки.

А1

В

    А        

Р

В

А

Р

                                  

где α – градусная мера дуги АВА1

 

откуда     

Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания.

5.     Усеченный конус, его получение и площадь:

образующая

конуса

Основания

поверхность

боковая

Р

                 

Усеченный конус может быть получен вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной к основаниям.

Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.