Культивирование вирусов

ОГЛАВЛЕНИЕ

Введение...............................................................................................................................3

1.   Виды культур клеток........................................................................................................4

2.   Питательные среды..........................................................................................................6

3.   Получение клеточных культур...............................................................................…9-18

3.1. Приготовление первичных клеточных культур………………………................…9

3.2. Получение монослойных перевиваемых культур клеток......................................10

3.3. Роллерное культивирование клеток.......................................................................11

3.4. Суспензионное культивирование клеток...............................................................13

3.5. Культивирование клеток на микроносителях……………………………………..16

4.   Выращивание вирусов в культурах клеток..............................................................19-24

4.1. Предосторожности при работе с зараженными вирусами клетками....................20

4.2. Обнаружение вирусов.............................................................................................21

4.3. Культивирование пикорнавирусов на примере получения полиовируса

типа 3 в культуре клеток HeLa................................................................................24

Список литературы.............................................................................................................25

ВВЕДЕНИЕ

Для количественного накопления вирусов наиболее удобную систему представляют культуры клеток. Первые попытки культивирования клеток животных вне организма относятся к концу прошлого столетия. Эти отрывочные наблюдения указывали на возможность сохранения жизнеспособности тканей и клеток в искус­ственных условиях и положили начало глубоким науч­ным исследованиям тканевых культур.

Большая заслуга в деле paзработки методов куль­тивирования тканей принадлежит Каррелю Он впервые доказал возможность размножения клеток жи­вотных в искусственных условиях и тем самым проде­монстрировал их «бессмертность» и сходство с одноклеточными свободноживущими организмами. Значительных успехов в этом направлении достигла группа иссле­дователей под руководством Эрла. Они первые получи­ли рост большого числа клеток на стекле и в жидкой пе­ремешиваемой суспензии. Появление антибиотиков и ус­пехи в создании искусственных питательных сред открыли новую эру в развитии методов тканевых культур.

Тканевые культуры давно нашли применение для ре­шения различных вопросов биологии и медицины. Од­нако лишь успехи в области вирусологии, достигнутые с помощью тканевых культур, явились мощным стиму­лом их развития до современного уровня.

Культивирование вирусов помогает решить ряд теоретически проблем, связанных с изучением особенностей взаимодействия "вирус-клетка". Кроме того решение целого ряда прикладных задач, связанных с диагностикой и производством препаратов для профилактики вирусных инфекций невозможно без накопления вируссодержащего сырья.

1. ВИДЫ КУЛЬТУР КЛЕТОК.

Перенесение клеток целостного организма в условия жизни in vitro прекращает существование их как одного из многочис­ленных структурных элементов ткани или органа, в состав ко­торых они ранее входили. При этом клетки выходят из-под конт­роля нейро-гуморальных факторов и приобретают ряд особен­ностей, зависящих как от самого факта отторжения клеток от этих тканей, так и от конкретных условий их существования in vitro.

Живущие вне организма клетки или ткани характеризуются целым комплексом метаболических, морфологических и гене­тических черт, резко отличных от свойств клеток органов и тка­ней in vivo.

В зависимости от методики первичной эксплантации ткани и техники ее культивирования различают несколько видов пе­реживающих и растущих культур тканей и клеток. Наиболь­шее распространение имеют однослойные, а также суспензионные культуры растущих клеток. Именно они составляют основу современной лабораторной и производственной вирусологиче­ской практики.

Различают два основных вида однослойных клеточных куль­тур: первичные и перевиваемые.

Термином «первичная» обозначают клеточную культуру, по­лученную непосредственно из тканей че­ловека или животных в эмбриональном или постнатальном периоде. Срок жизни таких культур ограничен. По прошествии определенного времени в них возникают явления неспецифиче­ской дегенерации, что выражается в грануляции и вакуолизации цитоплазмы, округлении клеток, утрате связи между клетками и твердым субстратом, на котором они выращивались. Перио­дическая смена среды, изменение состава последней и другие процедуры могут лишь несколько увеличить сроки жизни пер­вичной клеточной культуры, но не могут предотвратить ее конечной деструкции и гибели. По всей вероятности, этот процесс связан с естественным угасанием метаболической активности клеток, выведенных из-под контроля нейро-гуморальных факторов, действующих в целостном организме.

Лишь отдельные клетки или группы клеток популяции на фоне дегенерации большей части клеточного пласта могут со­хранить способность к росту и размножению. Эти клетки, об­наружив потенцию бесконечного размножения in vitro, при многократных перевивках дают начало перевиваемым культурам клеток.

Различают линии и штаммы перевиваемых клеток. Первым термином обозначают перевиваемые клетки, характеризующиеся потенциальным бессмертием и, как правило, гетероплоидным кариотипом вторым термином — полуперевивае­мые клетки с диплоидным набором хромосом и ограниченной продолжительностью жизни in vitro. Появление и тех, и дру­гих клеток связано с процессом отбора в клеточной популяции первичных культур, являющихся, таким образом, источником всех линий и штаммов перевиваемых клеток.

Основное преимущество линий перевиваемых клеток, по срав­нению с любой первичной культурой, состоит в потенции неог­раниченного размножения вне организма и относительной автономности сближающей их с бактериями и одноклеточными простейшими.

Способность перевиваемых клеток к бесконечному размножению in vitro знаменует собой качественный скачок, в результате которого клетки приобре­тают способность к автономному существованию, подобно мик­роорганизмам, выращиваемым на искусственных питательных средах. Совокупность изменений, приводящих к появлению у клеток таких особенностей, называют трансформацией, а клетки перевиваемых тканевых культур — трансформированными.

Усовершенствование техники культивирования клеток зна­чительно расширило возможности получения перевиваемых кле­точных линий из самых разнообразных тканей животных и че­ловека. При этом не был обнаружен возрастной предел, выше которого ткани утрачивали бы способность адаптации к неог­раниченному росту in vitro, т.е. к трансформации.

Другим источником перевиваемых клеточных линий являются злокачественные новообразования. В этом случае трансформа­ция клеток происходит in vivo в результате развития патологи­ческого процесса, этиология которого во многом остается еще невыясненной.

Не все злокачественные новообразования способны давать начало перевиваемым клеточным культурам. Так, например, безуспешными были попытки получить перевиваемые клетки из раковых опухолей желудка и молочных желез человека. С тру­дом удается адаптировать к жизни in vitro клетки плоскокле­точного рака кожи и слизистых. С другой стороны, сравни­тельно легко выводятся линии из тканей сарком и злокачест­венных опухолей нервной системы.

Особую категорию клеточных культур составляют полупере­виваемые штаммы, имеющие диплоидный набор хромосом. Они выгодно сочетают в себе черты первичных и перевиваемых клеток.

2. ПИТАТЕЛЬНЫЕ СРЕДЫ.

В любой клеточной культуре различают клеточную и жид­кую фазы. Жидкая фаза обеспечивает жизнедеятельность кле­ток культуры и представляет собой питательные среды различ­ного состава и свойств.

Все среды по своему назначению делятся на ростовые и под­держивающие. В составе ростовых сред должно содержаться больше питательных веществ, чтобы обеспечить активное раз­множение клеток для формирования монослоя на поверхности стекла или достаточно высокую концентрацию клеточных эле­ментов в суспензии (при получении суспензионных культур). Поддерживающие среды фактически должны обеспечивать лишь переживание клеток в уже сформированном монослое при раз­множении в клетках вирусных агентов.

Ростовые и поддерживающие среды многокомпонентны. В их состав могут входить как естественные продукты (амниотические жидкости, сыворотки животных), так и субстраты, полу­ченные в результате частичной обработки естественных продук­тов (эмбриональные экстракты, гидролизат лактальбумина, гемогидролизат, аминопептид и т. д.), а также синтетические хи­мически чистые вещества (аминокислоты, витамины, соли).

В качестве примера питательной среды, полностью состоя­щей из естественных компонентов, можно назвать среду Бакли, предложенную для выращивания клеточных культур из почеч­ного эпителия обезьян. В эту среду входит коровья амниотиче-ская жидкость (85%), лошадиная сыворотка (10%) и коровий эмбриональный экстракт (5%).

Все естественные продукты малостандартны, их использова­ние связано с большой опасностью микробной и вирусной конта­минации клеточных культур. В связи с этим и происходит по­степенное вытеснение их синтетическими стандартными смесями. Наибольшее применение находят синтетическая среда 199 и среда Игла. Широко используются среды, содержащие строго определенные количества солей, аминокислот и витаминов.

Независимо от назначения все питательные среды для тка­невых культур конструируются на основе какого-либо сбалан­сированного солевого раствора с достаточной буферной ем­костью. Чаще всего ими являются растворы Хенкса и Эрла. Эти   растворы — обязательный компонент любой питательной среды. Неотъемлемым компонентом большинства ростовых сред является сыворотка животных (телячья, бычья, лошадиная), без наличия 5—10% которой размножение клеток и формирование монослоя не происходит.

Включение сыворотки в то же время препятствует созданию ростовых сред точного химического состава, весьма важных для развития фундаментальных исследований по клеточной фи­зиологии, так как вместе с сывороткой (или ее дериватами) вводится целый комплекс неконтролируемых факторов, варьи­рующих в зависимости от серии сыворотки.

В 50-е годы Ewans и Waymouth были предложены бессыво­роточные среды точного химического состава. Однако эти среды не обеспечивали тех показателей пролиферативной активности клеток, которые обусловливают среды с добавлением сывороток. В  связи с этим  представляет интерес работа Birch  и Pirt,  показавших,  что для  обеспечения  интенсивного  роста клеток в бессывороточных средах определяющим является включение сернокислых солей Fe, Zn, Cu, а также МnС12.

В ростовые питательные среды, а так же в буферный раствор для промывания тканей добавляют антибиотики. Их вводят в среду непосредственно перед употреблением из расчета 1 мл основного раствора антибиотиков на 500 мл среды.

Ниже приведен состав и метод приготовления одной из распространенных питательных сред.

 Среда Игла

1.   л-аргинина - 17,4

2.   л-цистина - 4,8

3.   л-гистидина  - 3,1

4.   л-изолейцина - 26,2

5.   л-лейцииа  - 13,1

6.   л-лизина - 14,6

7.   л-метионина - 7,5

8.   л-фенилаланина - 8,3

9.   л-треонина - 11,9

10. л-триптафана - 2,0

11. л-тирозина - 18,1

12. л-валина - 11,7

13. биотина - 0,24

14. холина - 0,12

15. холин-хлорида - 0,14

16. витамина В12 (птероилглютаминовой кислоты) - 0,44

17. никотинамида  - 0,12

18. пантотеновой кислоты - 0,22

19. пантотената кальция - 0,48

20. пиридоксаля (пиридоксин хлоргидрата) - 0,20

21. тиамин-хлоргидрата - 0,34

22. рибофлавина - 0,04

23. хлористого натрия - 5850,0

24. хлористого калия - 373,0

25. фосфата натрия однозамещенного (NaH2PO4 . Н2О) - 138,0

26. кальция хлористого - 111,0

27. двууглекислого натрия (NaHCO3) - 1680,0

28. магния хлористого (MgCl2 .2О) - 102,0

29. глюкозы - 900,0

30. л-глютамина - 146,2—292,3

31. пенициллина - 50,0

32. стрептомицина - 50,0

33. фенола красного - 5,0

34. воды  до 1000,0

Приготовление.

Раствор 1. В 500 мл воды, нагретой приблизительно до 80°, помешивая, растворяют указанные выше количества аминокислот, после чего добавляют л-глютамин и фенол-красный.

Раствор 2. В 100,0 мл воды растворяют неорганические соли, за исключением дву­углекислого натрия (NaHCO3), смешивают с предыдущим раствором неорганических солей и добавляют биотин и витамин B12.

Раствор 3. В 200,0 мл воды растворяют все витамины, кроме биотина и птеро-илглютаминовой кислоты, и антибиотики — пенициллин и стрептомицин. Все растворы стерилизуют фильтрованием через стеклянный фильтр-нутч (пори­стая стеклянная пластина, величина пор 0,7—1,5

500 мл раствора 1 + 200 мл раствора 2 + 200 мл раствора 3 смешивают и доводят стерильной водой до 1000,0 мл. Можно добавить 1 мг инозита на 1 л.

3.   ПОЛУЧЕНИЕ КЛЕТОЧНЫХ КУЛЬТУР.

3.1. ПРИГОТОВЛЕНИЕ ПЕРВИЧНЫХ  КЛЕТОЧНЫХ КУЛЬТУР.

Первичной - называется культура, полученная из ткани и выращивае­мая in vitro до начала субкультивирования, то есть до первого посева. Первич­ная культура лишена многих клеток, присутствующих в исходной ткани, по­скольку не все клетки способны прикрепляться к субстрату и выжить in vitro. В процессе культивирования клеток происходит относительное обеднение культуры неделящимися или медленно делящимися клетками.

На первом этапе получения первичной культуры проводят стерильное удаление фрагмента ткани, органа животного и его механическую или фер­ментативную дезагрегацию. Ткань измельчается до кусочков объемом до 1 - 3 мм, кусочки ткани отмываются от эритроцитов раствором Хенкса с антибио­тиками. Для дезагрегации ткани используют трипсин (0,25% неочищенный или 0,01 - 0,05% очищенный) или коллагеназу (200 - 2000 ед/мл, неочищен­ная) и другие протеолитические ферменты. Такой способ получения культуры обеспечивает высокий выход клеток.

Первичные культуры могут быть также получены от кусочков ткани, объемом 1 мм, которые прикрепляются к поверхности субстрата благодаря собственной адгезивности или наличию насечек на чашке, или с помощью сгустка плазмы. В этих случаях будет происходить рост клеток из фрагмен­тов. Клетки,  мигрирующие из эксплантатов могут использоваться для пассирования. Фрагменты ткани (эксплантаты) переносятся на новые чашки, миг­рирующие клетки могут удаляться пересевом, смесью версена и трипсина, а остающиеся эксплантаты будут образовывать новые выросты.

Известны такие первичные культуры, как культура фибробластов куриного эмбриона, культура клеток почки теленка, лейкоциты.

3.2. ПОЛУЧЕНИЕ МОНОСЛОЙНЫХ ПЕРЕВИВАЕМЫХ КУЛЬТУР КЛЕТОК.

Как уже отмечалось выше, одним из методов получения перевиваемых клеточных ли­ний является отбор клеток с повышенной активностью роста и размножения из популяции первичных культур. Отбор можно осуществить при регулярной смене среды, омывающей монослой первично трипсинизированной клеточной культуры. Для этого отбирают матрасы с хорошо сформированным клеточным моно­слоем (сами матрасы должны иметь ровное дно и не должны иметь на стенках царапин и матовых пятен). Приготовленную для систематической смены ростовую среду разливают по не­большим сосудам (чтобы исключить бактериальное загрязне­ние) и хранят при t - 4°.

Смену среды производят регулярно, не реже 1 раза в не­делю. В течение первых 3 недель заменяют по 20 - 30% объема ростовой среды, в течение следующих 3 - 4 недель - 50 - 60%, позднее проводят полную смену среды. Свежую среду непосред­ственно перед работой подогревают до t - 37°.

По мере смены сред клетки меняют свою морфологию. Часть клеток округляется и отпадает от стекла. Большинство клеток стягивается к центру, и монослой приобретает звездча­тый вид. Сами клетки при этом несколько удлиняются. Через 7 - 10 смен среды в матрасах, как правило, начинают появ­ляться новые клеточные элементы, причем в разных культурах они имеют разную морфологию.

В культуре клеток почки куриного эмбриона в центре моно­слоя или между стянутыми его участками появляются округ­ленные клеточные элементы, из которых постепенно формиру­ются скопления в виде небольших колоний. В культуре клеток почки обезьяны появляются одиночные образования, напомина­ющие зерна. Клетки плотно прилегают друг к другу, образуя мелкие прозрачные колонии. Количество таких клеток нарастает медленно, размеры колоний также почти не увеличиваются. Колонии появляются не только на дне матраса, но также на боковых поверхностях, на границе питательной среды. Поэтому обязательным условием при смене питательной среды является поддержание ее постоянного объема. В культуре клеток почек эмбриона человека на фоне массовой дегенерации стянутого в тяжи монослоя выявляются крупные полигональные клетки с длинными отростками.

Возникшие в процессе отбора атипичные клеточные эле­менты должны быть отделены от остальных участков монослоя и перенесены в отдельные пробирки или матрасы. Для этого может быть использован метод версенизации или механиче­ский откол атипичных клеток с помощью бактериологической петли или шпателя. Последний способ особенно необходим при работе с культурой клеток почек обезьяны, где колонии атипич­ных клеток плотно прикреплены к стеклу и сами от него не от­деляются.

При смене питательной среды в случае появления атипичных клеток рекомендуется осторожно удалить большую часть рос­товой среды, а меньшей частью энергично отполоскать монослой и эту среду разлить по пробиркам. В этом случае в среде могут оказаться атипичные клетки, обладающие способностью образовывать колонии, пригодные для дальнейших пересевов.

После переноса культуры атипичных клеток в новую посуду наблюдение за основной культурой целесообразно продолжить, так как процесс выведения новой клеточной линии весьма сло­жен, и далеко не всегда отобранные атипичные элементы дают начало жизнеспособной линии перевиваемых клеток. Необхо­димо, чтобы вся работа по получению новых клеточных линий, продолжающаяся в течение многих месяцев, проводилась с од­ними и теми же питательными средами, сыворотками животных и сериями антибиотиков.

Известны такие первичные культуры, как культура клеток почки золотистого хомячка (BHK), культура клеток почки сибирского горного козерога (ПСГК), культура клеток почки зеленой мартышки (CV).

3.3. РОЛЛЕРНОЕ КУЛЬТИВИРОВАНИЕ КЛЕТОК

До недавнего времени ткане­вые культуры применялись в вирусологии преимущественно в виде однослойных стационарных культур. Во многих случаях этот метод выращива­ния клеток является незаменимым. Многолетний опыт показывает, что при использовании однослойных стационарных культур встречается ряд трудно­стей, связанных с огромными затратами рабочего времени и материалов. С этой точки зрения, более выгодны роллерные культуры, которые эко­номичны, характеризуются оптимальным отношением полезной площади культивирования к объему питательной среды и открывают благоприятные возможности для накопления клеточной массы.

Термин «роллерные культуры» обозначает метод культивирования, при котором клеточный монослой располагается по всей цилиндрической поверхно­сти горизонтально вращающихся сосудов и периодически омывается питательной средой. В силу определенных причин некоторое количество клеток может в от­дельных случаях быть взвешено в культуральной среде. В подобном варианте культуру клеток называют роллерно-суспензионной. "Урожайность" клеточной культуры будет тем больше, чем больше площадь, с которой собирают клетки. Исследователи использовали различные пути увеличения площади поверхности, на которой происходило прикрепление и размножение клеток. Для этого приме­няли различного характера основы с большой удельной поверхностью: твердую, губчатую, из шерсти, коллагена, на стеклянных спиралях и т. д. Широкого рас­пространения эти методы не получили, так как значительно затрудняли манипу­ляции с клетками, но следует отметить описанную Л. С. Ратнером и В. А. Крику­ном методику многоярусного культивирования. Клетки культивировали в 1,5, 10 и 15-литровых бутылях, полностью загруженных овальными стеклянными труб­ками, расположенными параллельно продольной оси сосудов. Полезная площадь при этом возрастала по сравнению со стационарными однослойными культурами в сосудах того же объема в 20 раз. Культивирование проходило в 2 этапа. На пер­вом этапе бутыли вращали вокруг горизонтальной оси с целью равномерного распределения клеток. В дальнейшем, когда клетки прикреплялись к стеклу, культивирование продолжалось в стационарном положении. Описанная культуральная система была успешно использована для культивирования вируса ящура.

Более эффективным оказалось вращение сосудов, в которых происхо­дило размножение клеток. Вначале клетки выращивали в пробирках, но с развитием технического оснащения возросли объемы культуральных сосу­дов, и от выращивания клеток во вращающихся пробирках исследователи перешли к вращающимся бутылям. Роллерные культуры стали применяться как для накопления клеток, так и размножения вирусов.

Для роллерного культивирования используются специальные стеллажно-ярусные аппараты для вращения бутылей или барабаны. Чаще всего для культивирования используют 0,5—3-литровые бутыли. В производст­венных условиях объем их может достигать 20 литров и более. Аппараты для роллерного культивирования просты, надежны и обслуживание их не­сложно. Большое значение имеет скорость вращения бутылей. Она не должна быть слишком большой, чтобы не препятствовать прикреплению клеток, но и не слишком низкой, так как длительное нахождение клеток в газовой фазе ухудшает условия их питания. В работах разных авторов скорости вращения бутылей варьировали от 8—12 об/час, до 1 об/мин. Наиболее пригодной для различных клеточных культур оказалась скорость вращения флаконов в пределах 0,5—1 об/мин. Рекомендуется в течение первых 30 мин. после за­сева клеток обеспечить высокую скорость вращения флаконов (0,5—1,0 об/мин) для равномерного распределения материалов, затем перевести их на низкую скорость вращения (20—30 об/час).

Посевная концентрация в 1 мл среды составляет для клеток СПЭВ, ВНК-21, HeLa, L - 60-80 тыс., для диплоидных клеток 100-200 тыс., для первичных культур - 200-300 тыс. Объем ростовой среды должен составлять 1/10, 1/20 часть объема роллерного флакона. Роллерный метод культивиро­вания позволяет получить большее количество клеток. Так, с флакона емко­стью 3 л можно получить урожай клеток HeLa в 8 раз, ВНК-21 - в 9 раз, АО - в 11 раз больший, чем с монослойной стационарной культурой флакона ем­костью в 1 л. Кратность экономии сред при использовании 3-литровых фла­конов составляет для клеток HeLa 2,8; ВНК-21 - 5,0, АО - 4,0. Способно­стью к росту и размножению в роллерных условиях обладают субкультуры, перевиваемые культуры и реже первичные, а также диплоидные штаммы клеток. Для лучшего размножения клеток в роллерных аппаратах необхо­дима адаптация их к новым условиям культивирования. Роллерный метод культивирования позволяет получить большие количества клеток. Преиму­ществом роллерных культур по сравнению с традиционными стационарны­ми культурами является, в частности, более экономичное использование питательных сред и более высокий выход вирусного антигена (на 1—2 lg).

 

3.4. СУСПЕНЗИОННОЕ   КУЛЬТИВИРОВАНИЕ КЛЕТОК

В 1953 году Оуенс с со­трудниками впервые показал способность клеток размножаться в жидкой среде в свободно суспендированном состоянии. С тех пор метод суспензионного культивирования привлекает внимание исследователей в связи с его высокой эффективностью при накоплении больших количеств клеток. Ока­залось, что клетки перевиваемых линий, в отличие от остальных типов кле­точных культур, могут длительно культивироваться во взвешенном состоя­нии. Клетки в этих условиях размножаются, не прикрепляясь к стенкам культурального сосуда, находясь в суспензионном состоянии, благодаря постоянному перемешиванию среды. При оптимальном режиме выращива­ния клетки в суспензиях быстро размножаются, имеют более высокий «уро­жай», чем в стационарных культурах. Первичные и перевиваемые линии клеток имеют неодинаковую способность роста в суспензии. Так, гетероплоидные и анеуплоидные постоянные линии, в отличие от псевдодиплоидных линий, адаптируются быстрее к росту в суспензии.

Суспензионные культуры готовят из однослойных культур. Клетки от­слаивают от стекла с помощью растворов версена и трипсина. Осадок клеток по­сле центрифугирования (1000 об/мин.) ресуспендируют в свежей питательной среде. Приготовленную суспензию помещают в культуральные сосуды (реакто­ры, ферментеры) и выращивают при постоянном перемешивании. В научных исследованиях концентрация клеток в исходной суспензии колеблется от 0,3 до 10х10 в 1 мл. Оптимальная концентрация клеток в исходной суспензии должна быть 2-5х10 в 1 мл. По мнению Эрла и его сотрудников, концентрация клеток в суспензированной культуре должна быть такой, чтобы фаза логарифмического роста наступала не позднее 16-24 часов после приготовления культуры. Суспен­зионные клеточные культуры проходят характерные стадии: лаг-фазу, фазу лога­рифмического роста, стационарную фазу и фазу логарифмического отмирания. В первой стадии, как правило, количество клеток уменьшается, во второй стадии популяция клеток увеличивается (логарифмическая стадия роста), в третьей ста­дии увеличения количества клеток не наблюдается (стационарная фаза). Если культивирование продолжить дальше, то обнаружится период уменьшения чис­ленности клеток-фаза логарифмического отмирания (фаза разрушения). Скорость размножения клеток в логарифмической фазе роста выражают временем генера­ции. Под временем генерации имеется в виду период, необходимый для удвоения популяции клеток в культуре. Для суспензионного выращивания клеток важным условием является перемешивание жидкости, которое должно быть непрерывным и достаточно интенсивным, чтобы поддерживать клетки во взвешенном состоя­нии, препятствовать их осаждению и прикреплению к стенкам сосуда и в то же время не вызывать их механического повреждения.

Перемешивание суспензионных культур проводят лопастными магнитны­ми мешалками, а также круговыми качалками. В настоящее время широко при­меняют вращение флаконов и бутылей вокруг продольной оси (15-40 об/мин). На магнитных мешалках скорость вращения составляет 100—200 об/мин. Скорость перемешивания зависит от объема культуры; малые объемы культуры требуют невысокой скорости, тогда как ее необходимо увеличить при больших объемах. Для предотвращения оседания клеток на внутренней поверхности сосуда произ­водят силиконирование. Силиконовое покрытие в силу своей гидрофобности препятствует прикреплению клеток к стенке сосуда.

Внутренние стенки культурального сосуда смачивают 5% или 10%-ным раствором силикона и после испарения растворителя (бензолового, аце­тонового) сосуды выдерживают при 85°С и 200° (соответственно в течение 30 и 60 мин). После охлаждения сосуды наполняют горячей бидистиллированной водой и оставляют на 2 часа, затем их 3 раза ополаскивают бидистиллированной водой и высушивают при 100°С. Сосуды стерилизуют в сушильном шкафу при 170°С в течение 2 часов.

Максимальный рост клеток в суспензии наблюдают при рН 7,0-7,2. Питательные среды, применяемые для выращивания клеток в суспензии, не отличаются от сред, используемых для выращивания клеточных линий в однослойной культуре. Чаще всего при культивировании клеток в суспензи­ях берут среду Игла с двукратной концентрацией аминокислот и витаминов.

Суспензионные культуры потребляют в 2-7 раз больше глюкозы, чем монослойные. В процессе потребления глюкозы клетки выделяют в среду токсичную для них молочную кислоту. Потребление клетками глюкозы и выработка молочной кислоты идут параллельно и находятся в прямой зави­симости от плотности клеточной популяции. Полезным оказалось прибавле­ние к питательной среде инсулина в количестве от 40 до 200 ЕД на 1 л. При­бавление к питательной среде инсулина изменяет соотношение между количеством поглощенной глюкозы и выделенной молочной кислоты. Для кле­ток линии L указанный коэффициент может быть снижен с 74-81 до 37-38%.

Различные аминокислоты потребляются из питательной среды рас­тущими клетками с неодинаковой скоростью. Отмечено, что регулярное прибавление аргинина (20-40 мг/л) и увеличение количества глутамина до 450 мг/л благоприятствуют росту взвешенных культур.

Прибавление инозитола (0,4 мг/л) позволяет ускорить рост культур амниотических клеток человека. Желательным является добавление к среде каталазы (1 мг/л) и тироксина (12 мг/л).

Большой интерес представляют работы, посвященные получению взвешенных культур клеток в синтетической среде, не содержащей сыворотки крови. Предпринимаются попытки увеличить вязкость питательной среды за счет безбелковых ингредиентов. С этой целью используется метил-целлюлоза и гиалуроновая кислота.

Метилцеллюлоза в концентрации 0,1-0,2% обладает максимальным за­щитным действием на взвешенные в среде клетки. Протективное действие метилцеллюлозы заключается в том, что молекулы образуют защитный слой вокруг клетки, предотвращающий повреждение клеток при перемешивании среды. Весьма важным показателем состояния суспензионной культуры является парци­альное давление кислорода в жидкой фазе. Концентрация кислорода в газовой фазе зависит от плотности клеточной популяции и нередко бывает ниже атмо­сферной. Недостаток кислорода ведет к появлению грануляции цитоплазмы, клетки теряют правильную округлую форму. При небольшом избытке кислорода клетки имеют хорошо очерченную, правильную, округлую форму, и становятся очень крупными при повреждающем действии избытка кислорода. Оптимальная концентрация кислорода для различных клеточных культур находится в пределах от 9 до 17% или 293 мм рт. столба. При концентрации кислорода выше 20% про­исходит ингибиция клеточного роста. Так, при концентрации кислорода 24% раз­множение клеток почек эмбриона кролика (линия ERK) снижалось наполовину, а при 30% сводилось к нулю. Повышение концентрации кислорода токсически воздействует на клеточный метаболизм.

Таким образом, размножение клеток в суспензии зависит от концен­трации клеток в исходной суспензии, аэрации и рН среды, состава питатель­ной среды, способа перемешивания, объема суспензии и других факторов.

Однородность суспензии, возможность длительного поддержания клеток в логарифмической фазе роста, перспективы математического моде­лирования процессов клеточного роста в зависимости от влияния факторов внешней среды, удобство многократного исследования физиологического состояния культуры клеток в суспензии, высокая экономичность метода -вот далеко не полный перечень преимуществ суспензионных культур.

Суспензионные культуры широко используется в вирусологических исследованиях и для накопления больших количеств вируссодержащего ма­териала, при изготовлении вакцин и диагностических препаратов.

3.5. КУЛЬТИВИРОВАНИЕ КЛЕТОК НА МИКРОНОСИТЕЛЯХ.

В 1967 г. Van Werel предложил метод культивирования, сочетающий эле­менты монослойного и суспензионного выращивания клеток, который он назвал методом «микроносителей». Суть его заключается в том, что клетки прикрепля­ются и размножаются на поверхности полимерных шариков-частиц «микроноси­телей» (МН), которые содержатся в суспензии с помощью перемешивающего устройства, например мешалки. На одной частице МН диаметром 160—230 мм может поместиться 350-630 (или в среднем 460) клеток. В одном мл среды можно суспензировать несколько тысяч частиц микроносителя, при этом общая площадь их составит от нескольких до                 50 см2/мл.

Инокулированные в культиватор клетки прикрепляются к по­верхности частиц МН и размножаясь, образуют сплошной монослой на каж­дой отдельной частице.

Основными преимуществами этого метода являются:

1) создание равномерных условий по всему объему сосуда, что делает воз­можным эффективно контролировать необходимые параметры (рН, р02 и др.); 2) получение высокой плотности клеточной популяции до 5-6 млн. клеток в 1 мл; 3) культивирование одновременно несколько сот миллиардов клеток; 4) введение постоянного контроля за динамикой роста клеток; 5) снижение роста контамина­ции в связи с сокращением операций, связанных с разгерметизацией культураль-ного сосуда; 6) значительная экономии питательных сред; 7) возможность сохра­нять выросшие клетки непосредственно на частицах при низких температурах; 8) возможность искусственно создавать различные концентрации МН с выросшими на них клетками; 9) возможность пассирования культуры без применения трип­сина путем добавления свежих порций микроносителя.

Микроносители должны иметь:

- небольшой положительный заряд в пределах 1,5-1,8 МЭКВ/г. В связи с тем, что большинство клеток животных имеют слабо отри­цательный заряд, они легче будут прикрепляться к такому МН:

- плотность 1,05—1,15 г/см; указанная плотность является оптималь­ной для поддержания МН во взвешенном состоянии;

- диаметр частиц от 100 до 250 мкм, что обеспечивает площади для роста нескольких сотен клеток;

- гладкую поверхность;

- прозрачность;

- отсутствие токсичности компонентов для клеток;

- незначительное впитывание компонентов среды;

- универсальность, обеспечивающую возможность использования их для первичных, диплоидных и гетероплоидных клеток. Немаловажное значение имеют свойства МН, которые позволяют использовать их многократно.

Проведено исследование многих гранулированных препаратов раз­личной химической природы, в том числе из поперечно-сшитого (ПС) декстрана, ПС-агарозы, ПС-поливинилпиролидона, полиакрилнитрита, порис­того селикагеля, полистирола, капрона, нейлона, алюмосиликата с целью использования их как микроносителей.

Пригодными являются только некоторые из них, главным образом имеющие в своей основе ПС-декстран.

Несколько зарубежных фирм разработали коммерческие препараты микроносителей, готовые к употреблению: Цитодекс-1, 2, 3 (Франция, Шве­ция), Супербит (США, Англия), Биосилон (Дания). Стоимость перечисленных препаратов довольно высока, поэтому необходимо проводить исследо­вания по разработке и производству отечественных МН.

Культивирование клеток на микроносителях проводят в обычных ферментерах для суспензионного культивирования. В ферментере не долж­но быть каких-либо выступов, карманов, чтобы предотвратить накопление микроносителей в застойных зонах. Поэтому разумно использовать ферментеры с круглым дном и гладкими стенками. Внутренняя поверхность ферментера должна быть силиконизирована для предотвращения прилипания микроносителей к стеклу или нержавеющей стали ферментера.

Для контроля за окружающими культуру условиями такими, как рН и О2, может быть использовано стандартное оборудование. Скорость переме­шивания суспензии с носителем должна быть 40-60 об/мин. Для выращива­ния на МН применяются различные типы клеток.

Концентрация цитодекса может варьировать от 0,5 до 5 мг/мл. Одна­ко, при производстве профилактических вакцин, применяют обычно конеч­ную концентрацию цитодекса, не превышающую 1 мг/мл. Повышение кон­центрации до 3 мг/мл и выше создает дополнительные трудности, связанные с необходимостью перфузии питательной среды и частичной ее замены, что осложняет технологический процесс.

Посевная концентрация клеток, а также условия культивирования на МН в первые часы в значительной степени определяют оптимальные пара­метры для пролиферации и максимального накопления клеток. Показано, что посев 10 клеток/мл перевиваемой линии почек обезьян (Vero) и диплоидных клеток фибробластов эмбриона человека (MRC-5) в уменьшенном до 1/3 объема питательной среды и при периодическом включении мешалки (30 об/мин) на одну минуту через каждый час в течение 4 часов, с после­дующим добавлением питательной среды до конечного объема, ведет к уве­личению пролиферации клеток и их количества по сравнению с контролем (полный объем питательной среды в момент посадки клеток и непрерывная работа мешалки с начала культивирования).

Важное значение для культивирования клеток на МН имеет питательная среда. Правильный подбор питательной среды также будет способствовать опти­мизации процесса пролиферации клеток и их качество. Необходимо проводить подбор питательных сред для культивирования клеток на различных типах МН. Показано, что перевиваемая линия клеток почек обезьян (Vero) на цитодексе дает наибольший выход при использовании среды Игла ДМЕ (посадочная концентра­ция клеток 105 мл) но сравнению со средой ВМЕ и 199. Если же количество кле­ток при посадке снизить до 104, то лучшие результаты дает среда 199. Все испы­туемые среды содержали 10% фетальной сыворотки.

4.   ВЫРАЩИВАНИЕ ВИРУСОВ В КУЛЬТУРАХ КЛЕТОК.

В настоящее время для выделения и размножения вирусов животных используются первичные культуры, штаммы клеток и установившиеся клеточные линии. В общих чертах процедура оказывается одинаковой для всех вирусов.

Среду удаляют с клеточного монослоя и монослой промы­вают сбалансированными буферными солевыми растворами (СБСР) или фосфатно-солевым буфером (ФСБ) для удаления ингибиторов (антител), которые могут присутствовать в среде. Вирусные частицы суспендируются в небольшом количестве СБСР или ФСБ и адсорбируются клетками в течение 30 - 60 мин. После этого солевые растворы заменяются свежей средой.

Заражение вирусами культивируемых клеток вызывает ха­рактерные морфологические изменения клеток. Конечные деге­неративные клеточные процессы (цитопатогенный эффект, ЦПЭ) обнаруживаются только через несколько недель роста в присутствии вирусов, но в ряде случаев ЦПЭ обнаруживаются уже через 12 ч. Детали морфологических изменений оказыва­ются различными в случае разных вирусов.

Если вместо продуктивной инфекции вирус вызывает кле­точную трансформацию, то это также сопровождается харак­терными изменениями морфологии и особенностей роста кле­ток.

4.1. ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С ЗАРАЖЕННЫМИ ВИРУСАМИ КЛЕТКАМИ.

Вирусы оказывают цитопатогенное действие и служат этиоло­гическими агентами при многих заболеваниях человека и жи­вотных. Кроме того, многие вирусы (например, онкорнавирусы, вирус герпеса тип II, аденовирусы, вирус полиомы и SV40) яв­ляются, по-видимому, агентами, вызывающими развитие опу­холей у животных.           Из-за способности вирусов проходить через бактериальные фильтры бывает трудно исключить вирусы из культур незараженных клеток при наличии вирусных суспен­зий, когда возможна передача вируса через воздух культуральной комнаты.

Указанные ниже меры предосторожности носят самый общий характер и применимы только в тех случаях, когда вирусы не представляют какой-либо особой опасности. При использовании особо опасных вирусов, представляющих опасность для здоровья сотрудников лаборатории или людей и животных окружающего мира, сле­дует применять дополнительные меры предосторожности. К вирусам, представляющим особую опасность, относятся вирусы ньюкаслской болезни, вирусы ящура, вирусы везикулярного стоматита, вирусы оспы, вирусы бешенства, ви­русы герпеса типа В и так далее. Кроме того, нельзя быть уве­ренным, что даже такие вирусы, как SV40, не представляют опасности для человека.

1)  Для заражения клеток и роста зараженных вирусами кле­ток должна использоваться специальная комната или груп­па комнат.

2)  Никакие живые вирусы не должны выноситься из этих помещений, не будучи заключены в плотно закрывающиеся контейнеры. Следует принимать меры предосторожности, чтобы наружные поверхности этих контейнеров не были за­грязнены вирусными частицами.

3)  При работе с вирусами должны быть использованы специ­альные защитные одежды (лабораторные халаты). После работы эта одежда должна помещаться в специальный бак для автоклавирования.

4)  Все среды и стеклянная посуда, которые были в контакте с вирусами, должны быть обработаны хлоросом; только после этого их можно выносить из помещения, пред­назначенного для работы с вирусами.

5)  Вся пластиковая посуда должна быть помещена в специ­альный бак для автоклавирования.

6)  Оборудование для хранения и обработки вирусного мате­риала должно размещаться внутри помещения для работы с вирусами.

7)  Лаборатория должна быть оснащена двухцикловыми авто­клавами, чтобы сотрудники лаборатории были защищены от вредоносных материалов.

4.2.            ОБНАРУЖЕНИЕ ВИРУСОВ.

Обнаружить присутствие вирусов и определить их количество можно с помощью целого ряда различных тестов, например:

1) Активность вируса измеряется путем определения количества содержащего вирус материала, необходимого для того, чтобы вы­звать специфическую реакцию в организме хозяина. Индуцируе­мая вирусом реакция может происходить по типу «все или ничего» (т. е. наличие или отсутствие инфекции), а может быть выражена количественно, например продолжительностью времени, необходи­мого для проявления инфекции, или числом поражений в слое чувствительных клеток. Количественное определение вирусной ак­тивности называется титрованием.

Наименьшее количество вируса, способное вызвать соответст­вующую реакцию, называется инфекционной единицей, и титр ис­ходной вирусной суспензии выражается числом инфекционных еди­ниц, приходящихся на единицу объема. Например, если минималь­ное количество суспензии вируса гриппа, вызывающее у мыши пневмонию при интраназальном введении суспензии ткани инфи­цированного легкого в разведении 1:106 равно 0,1 мл, то это значит, что титр вируса гриппа в исходной суспензии ткани лег­кого равен 107 инфекционным единицам на 1мл—1/(10~1-10-6) =107.

Как правило, обязательным компонентом метода титрования вируса является тест, позволяющий оценить результат инокуляции как положительный или отрицательный. Например, при титровании вирусов животных таким тестом может быть наличие или отсутствие видимых поражений в культуре клеток, воспалительная реакция на месте инокуляции вируса в кожу или роговицу, параличи, возникающие у животного в результате введения вируса в мозг, и т. д. Иногда размножение вируса можно выявить и в отсутствие видимой реакции со стороны организма-хозяина: на пример, заражение куриных эмбрионов миксовирусами можно обнаружить по появлению гемагглютининов в аллантоисной жидкости.

Наилучшие результаты дают методы титрования, в основе ко­торых лежит подсчет числа дискретных поражений на определенной площади слоя клеток, зараженных известным количеством содержащего вирус материала. В случаях когда число чувствительных к вирусу и доступных для него клеток можно практически считать бесконечно большим, как, например, при заражении фа­гом однослойной культуры бактерий на питательном агаре или при заражении вирусом сплошной однослойной культуры живот­ных клеток, поражения, вызываемые вирусом, или бляшки, образуемые фагом, в данном смысле подобны колониям бактерий на плотной питательной среде. Как число этих колоний пропорцио­нально числу бактериальных клеток, содержащихся в титруемом препарате, так и число бляшек прямо пропорционально количеству вируса, добавленному к однослойной культуре образование зараженными клетками вирусных частиц, которые могут быть идентифицирован, например, по природе нуклеиновых кислот и симметрии частиц.

2) Образование зараженными клетками нуклеиновых кислот, которые могут обладать характерной плотностью при цент­рифугировании в градиенте плотности или характерным размером при электрофорезе в агарозном геле или центри­фугировании в градиенте концентрации сахарозы.

3) Образование зараженными клетками или трансформирован­ными клетками характерных антигенов, которые могут быть визуализованы с помощью окрашивания флуоресцирующими специфическими антителами либо вызывать изменения в клеточной мембране, приводящие к адсорбции гема. В прямом методе антитела, полученные к вирусным антигенам, сочетаются с флуорохромом и используются для окраски за­раженных клеток. Положительная реакция (желто-зеленый цвет в люминесцентном микроскопе) указывает на присутствие в клетках вирусных антигенов. Этот метод, следовательно, мо­жет быть использован для выявления клеточной трансформа­ции, когда антитела вырабатываются, например, против ран­них антигенов вируса SV40, или для выявления образования зрелых вирусов, когда получаются антитела против капсидных белков. В непрямом методе антитела не сочетаются с флуорохро­мом. Вместо этого после взаимодействия антител с антигенами в фиксированных препаратах клеток к ним добавляются антигамма-глобулиновые антитела, конъюгированные с флуорохро­мом. Этот метод более чувствителен и позволяет избежать конъюгации каждого индивидуального антитела с флуоресцент­ным красителем. Так, одни и те же флуоресцентные антитела к антителам кролика (полученные у овец против кроличьих гамма-глобулинов) могут быть использованы для окраски лю­бых антител, образующихся у кроликов и взаимодействующих с вирусными антигенами в продуктивно зараженных или транс­формированных клетках. Еще более непрямой, но значительно более чувствительный метод, не требующий использования флуоресцентного микро­скопа - пероксидазный - антипероксидазный метод. Согласно этому методу, кроличьи антитела взаимодейст­вуют с антигенами фиксированных клеток и затем покрывают­ся антителами козы к иммуноглобулинам кролика, конъюгированными с комплексами пероксидазы хрена и кроличьей антипероксидазы. После этого препараты обрабатывают диамино-бензидином и перекисью водорода; коричневая окраска указы­вает на присутствие антигенов.

4) Наличие антигенов на вирусных частицах может приводить к реакциям гемагглютинации, позволяющим проводить ко­личественную оценку. У многих вирусов имеются антигены, которые могут адсорби­роваться на эритроцитах и вызывать их слипание. При взаимо­действии большого количества вирусных частиц и эритроцитов образуется сеть клеток, и суспензия агглютинирует,       т.е. эрит­роциты выпадают в осадок. Существует некоторая специфич­ность, заключающаяся в том, что определенные вирусы вызы­вают агглютинацию эритроцитов определенных животных, но если обнаружена активная комбинация, то гемагглютинация становится быстрым тестом, позволяющим определить титр ви­руса. Кровь отбирают в гепаринизированный шприц и эритроциты промывают трехразовым переосаждением в 0,85%-ном NaCl при 200 g в течение 10 мин. Окончательный осадок эритроцитов суспендируют в             200-кратном объеме 0,85%-ного раствора NaCl. Удобнее всего проводить тест на гемагглютинацию в микротитровальных пластинках. В серию лунок микротитровальной пластинки вносят по 25 мкл 0,85%-ного NaCl или ФСБ; в первую лунку вносят 25 мкл суспензии вируса, и смесь перемешивают (разведение 1:2). 25 мкл переносят затем из первой лунки во вторую (раз­ведение 1:4) и так далее, до конечного разведения 1:2048. По­сле этого в каждую лунку добавляют по 25 мкл суспензии эритроцитов, смесь перемешивают и оставляют при 4°С, ком­натной температуре или 37 °С до наступления гемагглютинации (1-2 ч). В лунках, где произошла агглютинация, осадок эритроцитов имеет неправильную форму, а в лунках, где гемагглютинации не было, клеточный осадок образует компактную точку на дне лунки. Разведение в последней лунке, в которой происходила гемагглютинация, рассматривается как титр, и этому разведе­нию приписывается значение 1 гемагглютинирующей единицы (ГАЕ). Предшествующее разведение содержит соответственно 2 ГАЕ и так далее.

5) Образование  зараженными   клетками   характерных   фермен­тов, или ферментов, легко отличаемых по свойствам от соот­ветствующих ферментов    клеток-хозяев.

4.3. КУЛЬТИВИРОВАНИЕ ПИКОРНАВИРУСОВ НА ПРИМЕРЕ ПОЛУЧЕНИЯ ПОЛИОВИРУСА ТИПА 3 В КУЛЬТУРЕ КЛЕТОК HeLa.

В качестве конкретной методики культивирования вирусов можно привести способ выращивания полиовируса в перевиваемых клетках.

Все процедуры проводятся в стерильных условиях.

1.   Определенные сублинии клеток HeLa (например, HeLa S3) могут расти в средах с низкой концентрацией ионов кальция (например, CaS2MEM). Для эффективного заражения сущест­венно, чтобы клетки хорошо росли в виде однородной суспен­зии. Клетки осаждают низкоскоростным центрифугированием (15 мин при 900 g) и ресуспендируют в среде CaS2MEM до концентрации ~ 2.107 кл/мл (~1/20 исходного объема).

2.   К клеточной суспензии добавляют вирус в концентрации 10—50 БОЕ на клетку; инкубируют ее на магнитной мешалке в течение 1 ч при 35 °С.

3.   Суспензию разводят той же средой до концентрации 2.106 кл/мл и добавляют 100 мкКи [3Н]-уридина.

4.   Клеточную суспензию инкубируют в течение 8 ч, после чего осаждают клетки низкоскоростным центрифугированием (15 мин при 900 g) и промывают один раз фосфатным буфер­ным раствором (PBS), не содержащим ионов магния и кальция.

5.   Клетки ресуспендируют в PBS (5-107кл/мл) и проводят три цикла замораживания — оттаивания.

6.   Остатки клеток удаляют центрифугированием.

7.   Супернатант сохраняют для дальнейшей очистки.

СПИСОК ЛИТЕРАТУРЫ

1.   Адамс Р. Методы культуры клеток для биохимиков. - М.: Мир, 1983, 263 с.

2.   Вирусология. Методы. / Под ред. Б. Мейхи. - М.: Мир, 1988, 344 с.

3.   Голубев Д. Б., Соминина А. А., Медведева М. Н. Руководство по применению клеточных культур в вирусологии. - Л.: Медицина, 1976, 224 с.

4.   Дьяконов Л. П., Глухов В. Ф., Поздняков А. А., Денисенко Г. Ф., Калмыкова Т. П. Культивирование клеток и тканей животных. - Ставрополь: Ставроп. Правда, 1988, 2 часть, 91 с.

5.   Животная клетка в культуре  под. ред. Л. П. Дьяконова, В. И. Ситькова. – М.: 2000

6.   Культура животных клеток. Методы. / Под ред. Р. Фрешни. - М.: Мир, 1989, 333 с.

7.   Руководство по ветеринарной вирусологии. / Под ред. В. Н. Сюрина. - М.: Колос, 1965, 687 с.

8.   Сергеев В. А. Репродукция и выращивание вирусов животных. - М.: Колос, 1976, 303 с.

9.   Феннер Ф., Мак-Ослен Б., Мимс С., Сэмбрук Дж., Уайт Д. Биология вирусов животных. - М.: Мир, 1977, т. 1, 447 с.