Математика. Интегралы

1.

*1. Говорят, что функция f(x) не убывает (не возрастает) на (a,b), если для любых точек x1<x2 из (a,b) справедливо неравенство f(x1)£f(x2) (f(x1)³f(x2)).

*2. Говорят, что функция f(x) возрастает (убывает) на (a,b), если x1<x2 из (a,b) справедливо неравенство f(x1)<f(x2) (f(x1)>f(x2)). В этом случае функцию называют монотонной на (a,b).

Т1. Дифференцируемая на (a,b) функция f(x) тогда и только тогда не убывает (не возрастает) на (a,b), когда f¢(x)³0 (£0) при любом xÎ(a,b).

                Док-во: 1) Достаточность. Пусть f¢(x)³0 (£0) всюду на (a,b). Рассмотрим любые x1<x2 из (a,b). Функция f(x) дифференцируема (и непрерывна) на [x1,x2]. По теореме Лагранжа: f(x2)-f(x1)=(x2-x1)f¢(a), x1<a<x2. Т.к. (x2-x1)>0, f¢(a)³0 (£0), f(x2)-f(x1)³0 (£0), значит, f(x) не убывает (не возрастает) на (a,b). 2) Необходимость. Пусть, например, f(x) не убывает на (a,b), xÎ(a,b), x+DxÎ(a,b), Dx>0. Тогда (f(x+Dx)-f(x))/Dx³0. Переходя к приделу при Dxà0, получим f¢(x)³0. Теорема доказана.

Т2. Для возрастания (убывания) f(x) на (a,b) достаточно, чтобы f¢(x)>0 (<0) при любом xÎ(a,b). Док-во: Тоже что и в Т2.

Замечание1. Обратное к теореме 2 не имеет места, т.е. если f(x) возрастает (убывает) на (a,b), то не всегда f¢(x)>0 (<0) при любом xÎ(a,b).

*3. Прямая х=а называется вертикальной асимптотой графика функций y=f(x), если хотя бы одно из предельных значений  или  равно +¥ или –¥.

Замечание 2. Непрерывные функции вертикальных асимптот не имеют.

*4. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при xà+¥(–¥), если f(x)=kx+b+a(x), где

Т3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при xà+¥(–¥), тогда и только тогда, когда существуют xà+¥(–¥) наклонная асимптота называется правой (левой). Док-во: Предположим, что кривая y=f(x) имеет наклонную асимптоту y=kx+b при xà+¥, т.е. имеет место равенство f(x)=kx+b+a(x). Тогда xà+¥, получаем f(x)=kx+b+a(x)à b=f(x)-kx-a(x). Переходя к пределу при xà+¥, получаем f(x)–kx=b+a(x), где a(x)à0, при xà+¥(–¥). Отсюда и получаем представление f(x)=kx+b+a(x). Теорема доказана.

Замечание3. При k=0 прямая y=b называется горизонтальной асимптотой, причем при xà+¥(–¥) – правой (левой).

2.

                *1. Точку х0 назовем стандартной для функции f(x), если f(x) дифференцируема в точке x0 и f¢(x0)=0.

                *2. Необходимое условие экстремума. Если функция y=f(x) имеет в точке x0 локальный экстремум, то либо x0 – стационарная точка, либо f не является дифференцируемой в точке x0.

                Замечание 1. Необходимое условие экстремума не является достаточным.

                Т1. (Первое достаточное условие экстремума). Пусть y=f(x) дифференцируема в некоторой окрестности точки x0, кроме, быть может, самой точки x0, в которой она является непрерывной. Если при переходе x через x0 слева направо f¢(x) меняет знак с + на –, то точка x0 является точкой максимума, при перемене знака с – на + точка x0 является точкой минимума. Док-во: Пусть xÎ(a,b), x¹x0, (a,b) – достаточно малая окрестность точки x0. И пусть, например, производная меняет знак с + на –. Покажем что f(x0)>f(x). По теореме Лагранжа (применительно к отрезку [x,x0] или [x0,x]) f(x)–f(x0)=(x- x0)f¢(a), где a лежит между x0 или x: а) x< x0Þx- x0<0, f¢(a)>0Þf(x)–f(x0)<0Þf(x0)>f(x); б) x>x0Þx–x0>0, f¢(a)<0Þf(x)–f(x0)<0Þf(x0)>f(x).

                Замечание 2. Если f¢(x) не меняет знака при переходе через точку х0, то х0 не является точкой экстремума.

Т2. (Второе достаточное условие экстремума). Пусть x0 – стационарная точка функции y=f(x), которая имеет в точке x0 вторую производную. Тогда: 1) f¢¢( x0)>0Þf имеет в точке x0 локальный минимум. 2) f¢¢( x0)<0Þf имеет в точке x0 локальный максимум.

3.

                *1. График функции y=f(x) называется выпуклым вниз (или вогнутым вверх) в промежутке (a,b), если соответствующая дуга кривой расположена выше касательной в любой точке этой дуги.

                *2. График функции y=f(x) называется выпуклым вверх (или вогнутым вниз) в промежутке (a,b), если соответствующая дуга кривой расположена ниже касательной в любой точке этой дуги.

                Т1. Пусть y=f(x) имеет на (a,b) конечную 2-ю производную. Тогда: 1) f¢¢(x)>0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вниз; 2) ) f¢¢(x)<0, "xÎ(a,b)Þграфик f(x) имеет на (a,b) выпуклость, направленную вверх

                *3. Точка (c,f(с)) графика функций f(x) называется точкой перегиба, если на (a,c) и (c,b) кривая y=f(x) имеет разные направления выпуклости ((a,b) – достаточно малая окрестность точки c).

                Т2. (Необходимое условие перегиба). Если кривая y=f(x) имеет перегиб в точке (c, f(c)) и функция y=f(x) имеет в точке c непрерывную вторую производную, то f¢¢(c)=0.

                Замечание1. Необходимое условие перегиба не является достаточным.

                Замечание2. В точке перегиба вторая производная может не существовать.

                Т3. (Первое достаточное условие перегиба). Пусть y=f(x) имеет вторую производную на cÎ(a,b), f¢¢(c)=0. Если f¢¢(x) имеет на (a,c), (c,b) разные знаки, то (c, f(c)) – точка перегиба графика f(x).

                Т4. (Второе условие перегиба). Если y=f(x) имеет в точке конечную третью производную и f¢¢(c)=0, а f¢¢¢(c)¹0, тогда (c, f(c)) – точка перегиба графика f(x).

4.

*1. Первообразная от функции f(x) в данном интервале называется функция F(x), производная которой равна данной функции: F¢(x)=f(x).

                T1. Всякая непрерывная функция имеет бесчисленное множество первообразных, причем любые две из них отличаются друг от друга только постоянным слагаемым. Док-во: F(x) и Ф(х) – две первообразные от f(x), тождественно не равные между собой. Имеем F¢(x)=f(x), Ф¢(х)=f(x). Вычитая одно равенство из другого, получим [F(x)–Ф(х)]¢=0. Но если производная от некоторой функции (в нашем случае от F(x)–Ф(х)) тождественно равна нулю, то сама функция есть постоянная; Þ F(x)–Ф(х)=С.

                *2. Неопределенным интегралом от данной функции f(x) называется множество всех его первообразных F¢(x)=f(x).

5.

            Свойства неопределенного интеграла:

  1. Производная НИ =подынтегральной функции; дифференциал от НИ равен подынтегральному выражению:
  2. НИ от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого:
  3. НИ от суммы конечного числа функций равен сумме интегралов от слагаемых функций: u, v, …,w-функции независимой переменной х. Док-во:
  4. Постоянный множитель можно выносить за знак НИ:

Т2. (об инвариантности формул интегрирования): Пусть òf(x)dx=F(x)+C – какая-либо известная формула интегрирования и u=ф(х) – любая функция, имеющая непрерывную производную. Тогда òf(u)du=F(u)+C. Док-во: Из того, что òf(x)dx=F(x)+C, следует F¢(x)=f(x). Возьмем функцию F(u)=F[ф(x)]; для её дифференциала, в силу теоремы об инвариантности вида первого дифференциала функции, имеем: dF(u)=F¢(u)du=f(u)du. Отсюда òf(u)du=òdF(u)=f(u)+C.

6.

                Метод замены переменных.

1) Подведение под знак дифференциала. Т1. Пусть функция y=f(x) определена и дифференцируема, пусть также существует f(x)=f(j(t)) тогда если функция f(x) имеет первообразную то справедлива формула: F(x) для функции f(x), т.е. F¢(x)=f(x). Найдем первообразную для f(j(t)), [F(j(t))]¢t=F¢(x)(j(t)) j¢(t)=F¢(x) j¢(t)=f(x) j¢(t). òf(x) j¢(t)dt=f(j(t))+C. F(j(t))+C=[F(x)+C]|x=j(t)=òf(x)dx|x=j(t).

                Замечание1. При интегрировании иногда целесообразно подбирать подстановку не в виде x=j(t), а в виде t=j(x).

2) Подведение под знак дифференциала. F(x)dx=g(j(x)) j¢(x)dx=g(u)du. òf(x)dx=òg(j(x)) j¢(x)dx=òg(u)du.

  1. dx=d(x+b), где b=const;
  2. dx=1/ad(ax), a¹0;
  3. dx=1/ad(ax+b), a¹0;
  4. ф¢(х)dx=dф(x);
  5. xdx=1/2 d(x2+b);
  6. sinxdx=d(-cosx);
  7. cosxdx=d(sinx);

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

7.

Интегрирование по частям: òudv=uv-òvdu. До-во: Пусть u(x) и v(x) – функции от х с непрерывными производными. D(uv)=udv+vdu,Þudv=d(uv)-vduÞ(интегрируем) òudv=òd(uv)-òvdu или òudv=uv-òvdu.

                Интегрирование функций, содержащих квадратный трехчлен:

Первый интеграл табличного вида: òdu/uk:

Второй интеграл сводится к нахождению интеграла: где u=x+p/2, a=q-p2/4>0

 – рекуррентная формула.

Интегрирование рациональных функций: R(x)=P(x)/Q(x), R(x)-рациональная функция, P(x) и Q(x)-многочлены. Дробь P(x)/Q(x) можно разложить в сумму простейших дробей, где Ai, Bi, Ci – постоянные, а именно: каждому множителю (x-a)k в представлении знаменателя Q(x) соответствует в разложении дроби P(x)/Q(x) на слагаемые сумма k простейших дробей типа  а каждому множителю (x2+px+q)t соответствует сумма t простейших дробей типа Q(x) на множители имеет место разложение дроби P(x)/Q(x) на слагаемые.

Правила интегрирования рациональных дробей:

  1. Если рац. дробь неправильная, то её представляют в виде суммы многочлена и неправильной дроби.
  2. Разлагают знаменатель правильной дроби на множетели.

Правую рац. дробь разлагают на сумму простейших дробей. Этим самым интегрирование правильной рац. дроби сводят к интегрированию простейших дробей.

8.

Интегрирование тригонометрических функций:

I.                    1             Интеграл вида:

2           R(sinx, cosx) – нечетная функция относительно sinx, то cosx=t.

3           R(sinx, cosx) – нечетная функция относительно cosx, то sinx=t.

4           R(sinx, cosx) – нечетная функция относительно sinx и cosx, то tgx=t.

II.                  1            

2           Оба показателя степени m и n – четные положительные числа: sinxcosx=1/2 sin2x; sin2x=1/2(1-cos2x);   cos2x=1/2(1+cos2x).

III.               òtgmxdx и òctgmxdx, где m-целое положительное число. tg2x=sec2x-1 или ctg2x=cosec2x –1.

IV.                òtgmxsecnxdx и òctgmxcosecnxdx, где n – четное положительное число. sec2x=1+tg2x или cosec2x=1+ctg2x.

V.                  òsinmx*cosnxdx, òcosmx*cosnxdx,  òsinmx*sinnxdx; sinacosb=1/2(sin(a+b)+sin(a-b));  cosacosb=1/2(cos(a+b)+cos(a-b));  sinasinb=1/2(cos(a-b)-cos(a+b));

9.

                Интегрирование иррациональных функций:

I.                    1             òR(x, , ,…)dx, k-общий знаменатель дробей m/n, r/s…. x=tk, dx=ktk–1dt

2           òR(x,

II.                  1              Вынести 1/Öa или 1/Ö-a. И выделим полные квадраты.

2          

3            Разбить на два интеграла.

4               

III.               1            

2          

3          

  1)p-целое число x=tS, где s- наименьшее общее кратное знаменателей у дробей m и n. 2) (m+1)/n –целое число: a+bxn=tS; 3) p+(m+1)/n-целое число: a-n+b=tS и где s- знаменатель дроби p.

10.

Определенный интеграл:

1)       интервал [a,b], в котором задана функция f(x), разбивается на n частичных интервалов при помощи точек a=x0<x1<…<xn–1<xn=b;

2)       Значение функции f(xI) в какой нибудь точке xiÎ[xi–xi–1] умножается на длину этого интервала xi–xi–1, т.е. составляется произведение f(xi)(xi–xi–1);

3)       , где xi–xi–1=Dxi;

I=– этот предел (если он существует) называется определенным интегралом, или интегралом от функции f(x) на интервале [a,b], обозначается

                *1. Определенным интегралом называется предел интегральной суммы  при стремлении к нулю длинны наибольшего частичного интеграла (в предположении, что предел существует).

                Т1. (Необходимое условие существования интеграла): Если ОИ существует, т.е. функция f(x) интегрируема не [a,b], то f(x) ограничена на этом отрезке. Но этого не достаточно. Док-во: Функция Дирихле: