Особенности химической формы развития материи

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОСИЙСКОЙ ФЕДЕРАЦИИ

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ

ИНСТИТУТ НЕФТЕХИМИЧЕСКОГО СИНТЕЗА ИМ. А. В. ТОПЧИЕВА РАН

РЕФЕРАТ

на тему:

«Особенности химической формы развития материи»

Выполнил:

аспирант Лебедев Ю. А.

Руководитель семинара:

д.ф.н., проф. Гончарук С. И.

Москва, 2005 г.

Содержание

TOC o "1-3" h z Введение. h 2

Основная часть. h 4

Единый закономерный мировой процесс. h 4

Физическая форма материи.. h 4

Химическая форма материи.. h 5

Особенности химической формы материи.. PAGEREF _Toc102300238 h 5

Химический способ развития материи.. PAGEREF _Toc102300239 h 7

Прямой субстратный синтез как интегральное направление химического развития h 9

Закономерный характер химической эволюции.. h 10

Детерминанты направленности химической эволюции.. h 10

Аккумуляция. h 13

Диалектика развития химической формы материи.. h 14

Биологическая форма материи.. h 16

Заключение. h 18

Список литературы.. h 19

Введение

Окружающий нас материальный мир един и вместе с тем много­образен. Опираясь на данные частных наук, научная философия изуча­ет наиболее общую структуру мира. С позиций научной философии реальный мир — это последовательность бесконечного множества форм материи и соответствующих им форм движения и развития. По устаревшей традиции последние в учебной и научной литературе обычно называются формами движения, хотя речь должна идти о при­сущей каждой форме материи форме развития, включающей в себя и то, что называют формой движения.

Форма материи — это вид материи, «определенная материя» (Энгельс), или, иначе, материя на определенной ступени развития. Форма движения и развития, или, короче, форма развития — прису­щий форме материи способ развития, включающий в себя и способ изменения.

Следует различать основные, частные и комплексные формы мате­рии и соответствующие им формы развития и движения (см. рис. 1).

Основные формы материи образуют бесконечный ряд, из кото­рого мы знаем в настоящее время четыре формы материи — физичес­кую, химическую, биологическую, социальную. Частные формы мате­рии и развития входят в состав основных форм. Так, физическая фор­ма материи включает сингулярное состояние, «струны», кварки, элементарные частицы, атомы, макротела, планеты, звезды, галактики, Метагалактику.

В реальной действительности основные формы материи не су­ществуют в чистом виде, они образуют комплексы, имеющие свою структуру и законы. В пределах известной нам части мира можно раз­личить следующий ряд комплексных форм материи: астрономическую (или космологическую), геологическую и географическую (А-ГЛ-Г).

ФИЗИЧЕСКАЯ

ХИМИЧЕСКАЯ

БИОЛОГИЧЕСКАЯ

СОЦИАЛЬНАЯ

С

Б

Х

Ф

Рис. 1

Астрономическая форма материи — комплекс физической, хи­мической, биологической и социальной форм материи: А=(Ф,X,Б,С). Геологическая форма материи — сочетание физической и химической форм материи в пределах Земли: Г=(Ф,Х). Географическая форма материи образована физической, химической, биологической и-соци­альной формами материи в пределах верхних оболочек Земли — ли­то-, гидро-, атмо- и биосферы: Г=(Ф,Х,Б,С).

Комплексные формы материи отличаются более «слабым», чем основные, единством. Определяющую роль в них играет низшая фор­ма материи — физическая. Основные, наиболее «сильные» связи, объ­единяющие, например, геологическую форму материи, — это физиче­ские взаимодействия: тяготение, теплота и т. д. Комплексные формы материи возникают на базе «основного стержня» — процесса развития, образованного ос­новными формами материи.

В марксистской философии первоначальная классификация ре­ального многообразия была разработана Энгельсом, который различал пять основных форм движения: механическую, физическую, химичес­кую, биологическую и социальную. Эти формы движения Энгельс связывал с соответствующими «предметным» формами», или форма­ми материи.

Основная часть

Единый закономерный мировой процесс

Мир — это единая материальная субстанция. Ее важнейшим способом существования является процесс развития. Материальное единство мира выражается поэтому в единстве мирового процесса развития, т. е. в едином закономерном мировом процессе. Субстанци­альное единство мира проявляется в его процессуальном единстве. Идея единого мирового процесса была разработана Энгельсом и Лени­ным и включена в число важнейших, обобщающих идей диалектичес­кого материализма. Согласно Ленину, мир есть «вечный процесс» «мир есть вечно движущаяся и развивающаяся материя», «единый, за­кономерный мировой процесс».

Единый мировой процесс представляет собой закономерную после­довательность ступеней, возникающих в результате спонтанного развития субстанции, которая порождает их из самой себя в силу своей природы.

Основой единого мирового процесса служит аккумуляция содержа­ния в процессе развития. Каждая последующая ступень, возникая из предшествующей, не устраняет, а сохраняет ее в себе. Тем самым субстанция «... не только ничего не оставляет позади себя, но несет с собой все приобретенное и обогащается и сгущается внутри себя» (Гегель). Мировой процесс есть бесконечное восхождение от низшего к выс­шему.

Известные современной науке четыре основные формы мате­рии выступают в качестве ступеней единого бесконечного мирового процесса развития. Представление о едином мировом процессе развития является синтезом философских и конкретно-научных обобщений.

Физическая форма материи

В отличие от других, физическая форма материи (ФФМ) изве­стна нам, более или менее достоверно, лишь с некоторого относитель­но простого уровня — лептонов и кварков, выше которого следует уровень «сильнодействующих» (участвующих в «сильных взаимодейс­твиях») элементарных частиц (протонов, нейтронов, мезонов, гиперо­нов и т. д.), атомов, макротел, космических объектов, включая круп­нейшее известное нам образование — Метагалактику, или «нашу Все­ленную», «Вселенную в космологическом смысле». Разрабатываются гипотезы о более простых, чем кварки, физических элементах или структурах — протокварках, «струнах» и т. д. Наиболее элементарный, по-видимому, уровень ФФМ — сингулярное состояние остается пока предметом гипотез и, в силу этого, современная физика еще не распо­лагает единой фундаментальной теорией ФФМ. В более укрупненном плане ФФМ может рассматриваться как составленная из двух основ­ных форм физической материи — вещества и поля.

С позиций философской концепции единого закономер­ного мирового процесса, фундаментальных положений диалектичес­кого материализма физическая форма материи не является наипро­стейшей формой материи, или «праматерией». С этой точки зрения не­обходимо выдвинуть гипотезу о существовании дофизических форм материи. Проникновение науки на субфизический уровень позволит глубже понять природу физических объектов и явлений. Химическая форма материи является, таким образом, законо­мерным продуктом развития масс-энергетических процессов, законо­мерным результатом развития физической формы материи.

Химическая форма материи

Особенности химической формы материи

Химическая форма материи (ХФМ) включает уровни от атома до макромолекулярных комплексов, лежащих в преддверии живой ма­терии. В современной науке выделение химического как одной из ос­новных форм материи, ступени единого мирового процесса связано с большими теоретическими трудностями, преодоление которых воз­можно только совместными усилиями теоретической химии и философии. В условиях современной научно-технической революции грани между основными формами бытия становятся чрезвычайно подвиж­ными и самостоятельное существование фундаментальных наук может быть установлено только с помощью глубокого философского анали­за, т. е. с использованием форм мысли, которые выходят далеко за рамки частнонаучного мышления.

Известно, что современная химия стала зрелой наукой, когда она получила хорошо разработанный физический фундамент, прежде всего — квантовую теорию химической связи. Процесс проникнове­ния понятий и методов физики в химию привел к появлению редукци­онизма — современной формы механицизма, заключающейся в по­пытке полного сведения химического к физическому, растворения хи­мического качества в физическом, или, иначе, физикализму. Эта по­пытка является частным случаем редукционизма вообще, выражающе­гося также в тенденции сведения биологического к химическому, со­циального к биологическому и, в конечном счете — всех высших форм материи к физической (радикальный физикализм). С позиций радикального физикализма все формы материи являются лишь различ­ными модификациями физической реальности.

Физикализм и редукционизм имеют некоторые основания, чрез­мерно преувеличиваемые и абсолютизируемые. Как известно, химиче­ская форма материи «строится» из физической. Химический атом син­тезирован из протонов, нейтронов и электронов. Химическое, как и любая другая форма материи, возникает на основе предыдущей и включает часть ее в себя, в качестве своей «основы» или «фундамента». Поэтому каждый элемент или «шаг» химической формы материи имеет свой физичес­кий «эквивалент». Каждый химический атом выступает также как уни­кальное физическое образование и может быть описан как физическая индивидуальность. В тенденции физика должна под своим углом зре­ния объяснить все химические феномены и связи. «...Вся система хи­мических элементов во всем ее широком многообразии в настоящее время в принципе может быть выведена из законов физики» (Хиншелвуд).

Однако совершенно бесспорно, что от физического описания и объяснения ускользает собственно химическое качество и, тем более, качества жизни и социальной жизни. Проблема «неуловимого химиче­ского качества» разрешима только на основе целостного подхода к миру, взгляда на мир как единый закономерный процесс, в котором химическая форма материи занимает свое закономерное место и мо­жет быть понята в сопоставлении с другими формами материи.

Обычно химическое качество связывается химиками с атомами как неделимыми химическими целостностями. Известный специалист в области философских вопросов химии Б.М. Кедров определял атом как «исходную химическую клеточку», своего рода химическую еди­ницу и рассматривал целостность атома как основной аргумент в по­льзу несводимости химического к физическому. Однако этот аргу­мент, действительно свидетельствуя в пользу существования химичес­кого качества, обнаруживает в то же время свою существенную недо­статочность, поскольку с точки зрения квантовой механики атом явля­ется и физической целостностью, на основе которой возникает хими­ческая целостность. Поэтому в некоторой степени схваченное, хими­ческое качество все же от нас ускользает. В определении химического качества мы несколько продвинемся дальше, если учтем, что физичес­кая целостность атома является целостностью физического многообра­зия - ядра и электронов, которые остаются всецело физическими обра­зованиями, а химическая целостность — слитно и неделима.

В пользу специфического и несводимого химического качества говорит, далее, тот факт, что ни одна фундаментальная химическая проблема — химической связи, реакционной способности, валентно­сти и т.д. не получила своего решения в квантовой химии, которая, не­смотря на ее огромную роль в химии, не способна объяснить, что в хи­мическом есть собственно химическое. Как отмечает Г. Фукс, предмет химии может быть адекватно понят только химией. «...Никакие физи­ческие методы сами по себе, — утверждает М.В. Волькенштейн, — не были бы в состоянии установить структуру сложных молекул без хи­мических исследований».

Сильным аргументом в пользу качественного своеобразия хи­мической реальности является ссылка на основной химический пери­одический закон, открытый Д. И. Менделеевым. Химическую реаль­ность поэтому нередко определяют как «менделеевский мир». Однако и эта ссылка не дает окончательного решения вопроса о специфичес­ком химическом качестве.

Существенным свидетельством в пользу своеобразной химичес­кой реальности является тот факт, что химические связи между качес­твенно различными атомами в физическом отношении различаются только количественно. Так, связь Н-С отличается от связи H-F с физи­ческой стороны лишь различной полярностью или разностью электроотрицательности атомов (0,4 и 1,9). С химической же стороны — это связи водорода с качественно различными химическими элементами.

Наиболее крупным аргументом в пользу признания несводимо­го химического качества, своеобразной химической формы объектив­ной реальности является то, что химический мир — это над-массэнергетический мир, в котором слабые масс-энергетические процессы хо­тя и имеют место, образуя физическую основу химизма, но не опреде­ляют его природы. Как отмечает Э.Штрекер, «вещество и качество, как таковые, нигде не выступают в уравнениях физики. Вещество вы­ступает в них только в виде массы, а качество имеет значение лишь постольку, поскольку встречающиеся иногда в функциональных урав­нениях константы имеют для каждого вещества свои числовые значе­ния. Еще не было никакой возможности выразить вещественную при­роду в ее качественной специфичности в виде массы и числа».

Химический мир, как подметил еще Гегель, характеризуется не­сравненно большим качественным многообразием, чем физический. Образуясь всего из трех основных элементарных частиц (причем час­тиц, обладающих наибольшим многообразием физических связей), хи­мическое включает свыше 100 химических элементов, из которых воз­никает огромное качественное многообразие химических соединений. Весьма существенной чертой химического мира является более заметное, чем в физическом мире, развитие особенного. В отличие от ядер и электронов химические соединения обладают ярко выраженной индивидуальностью. Д. И. Менделеев подчеркивал, что химический мир — «это целый живой мир с бесконечным разнообразием индиви­дуальностей как в самих элементах, так и в их сочетаниях». Масс-энергетические взаимодействия в химии характеризуются значительно меньшей индивидуальностью, чем над-массэнергетические. Послед­ние связаны прежде всего с одним из важнейших свойств химических веществ — химическом сродством.

Химический способ развития материи

Качественно более сложный хи­мический субстрат обладает новым, отличным от физического, спосо­бом развития.

Понятие сложности применительно к химической форме материи, очень важно, поскольку это понятие является одним из основных для теории развития. С этих позиций сложность химического элемента складывается из непосредственной сложности, которая выражается в его способности вступать в связи с большим или меньшим числом элементов, и внутренней сложности, выраженной в его эволюционном, потенциале, и в этом смысле может быть названа полной, сложностью.

При определении критерия сложности химических элементов и соединений нужно учитывать, во-первых, что сложность как таковая есть интегрированное многообразие, а во-вторых, что кри­терий сложности имеет комплексный характер и не может быть при­годным в равной мере для всех случаев. Критерий сложности хими­ческих элементов включает два основополагающих признака: 1) спо­собность образовывать многоатомные структуры, в особенности длин­ные цепи, 2) способность вступать во взаимодействие с тем или иным качественный многообразием элементов. Обобщая эти признаки, можно сказать, что критерием сложности химических элементов явля­ется интегративная способность, способность интегрировать боль­шее или меньшее качественное и количественное многообразие эле­ментов. В этом случае критерий сложности химических элементов будет иметь итоговый характер, т.е. учитывать всю совокупность связей химического элемента, все многообразие образуемых им сое­динений и, в конечном счете, «итог» химического развития – обра­зование живого.

Критерий сложности химических соединений, с одной стороны, является производным от критерия сложности элементов, а с другой - выступает как более сложный. Он должен включать шесть основных признаков: 1) количество атомов, составляющих соединение, 2) многообразие элементов, входящих в его состав, 3) сложность основного элемента (или элементов), на базе которого построено соединение, 4) длина цепи, 5) каталитическая активность, 6) способность вступать в многообразные типы реакций.

Все признаки, включенные в критерий сложности химических соединений, имеют более или менее общий характер и должны быть конкретизированы более частными признаками. Порядок, в котором они приведены, отражает последовательность применения их при определении природы химических соединений. Критерий сложности химических соединений может быть дополнен формальными критериями, в особенности информационным. Для применения критерия сложности необходима объективная шкала, составленная системой химического мира, в основе которой лежит магистральное направление развития. «Магистраль» развития не только делает применимым критерий слож­ности, определяя вес каждого входящего в него признака, но и вносит существенные дополнения к нему, главное из которых – роль химического соединения в общем процессе развития химизма, «вклад» его в процесс порождения жизни.

Общим направлением химической эволюции является движение от низшего к высшему, от простого к сложному. В пределах его можно выделить главное, или магистральное направление, связанное с углеродом, как наиболее сложным, и «перспективным» элементом, и другими элементами-органогенами. Все остальные направления химической эволюции, связанные с эле­ментами - неорганогенами, можно отнести к тупиковым, или побоч­ным, направлениям.

Химические элементы составляют низший, наиболее простой и исходный уровень химической эволюции. Они возникают в результате предшествующего физического процесса эволюции, обладают неоди­наковой физической и химической сложностью и, следовательно, раз­личными возможностями дальнейшего химического процесса разви­тия, различным потенциалом развития. Установлена за­мечательная особенность разнородного усложнения физических и хи­мических атомов в ходе роста их порядкового номера в системе Мен­делеева. Если в физическом отношении химические элементы, начи­ная с водорода, усложняются сравнительно однородно и линейно, так что уран и следующие за ним элементы оказываются безусловно более сложными, чем предшествующие, то химически элементы усложняют­ся нелинейно. Первоначально их химическая сложность быстро растет, достигая максимума у углерода, а затем резко падает. Уран в физичес­ком отношении сложнее, а в химическом — значительно проще, чем углерод. Последний — наиболее сложный химический элемент, обла­дающий наивысшим потенциалом химического развития. В той или иной мере близкими углероду эволюционными потенциалами облада­ют водород, кислород, азот, сера и фосфор. В силу этого углерод, во­дород, кислород и другие химические элементы играют главную роль в химической эволюции, закономерно приводящей к появлению жиз­ни, и называются поэтому элементами-органогенами. Менделеев пи­сал, что «ни в одном из элементов такой способности к усложнению не развито в такой мере, как в углероде».

В основе представления о химическом способе объективно-ре­ального существования и развития лежит понятие химической реак­ции. Претерпев большую эволюцию в истории науки, это понятие на­ходится в центре теоретических представлений современной химии. В понятии реакции химический способ объективно-реального существо­вания и развития определен применительно к отдельным превращени­ям. Химическая реакция — относительно самостоятельное превраще­ние, связанное с некоторым конечным числом реагирующих субстра­тов. На уровне понятия реакции не раскрывается целостная природа и направленность объективно-реального существования и развития ХФМ. Это делает необходимым перейти к более обобщенным и широ­ким понятиям.

Прямой субстратный синтез как интегральное направление химического развития

Химический процесс есть единство синтеза (ассоциации) и распада (диссоциации). Поскольку химический синтез приводит к усложнению веществ, он является химической формой прогресса, а диссоциация — химическим проявлением регресса. Если химический способ развития рассматривать только на уровне отдельных реакций, то может возникнуть представление о равенстве, равносильности про­цессов синтеза и распада. Однако более глубокий, целостный, системный подход к совокупному миру химических превращений дает осно­вания для вывода, что общим интегральным направлением химичес­ких превращений является прямой субстратный синтез. Коренная особенность такого синтеза состоит в том, что переход в новое, выс­шее качество, новую сущность не может быть осуществлен отдель­ным самостоятельно существующим субстратом. Для такого перехода отдельный химический субстрат нуждается в другом субстрате. В хи­мическом развитии новое качество, новая сущность выступают как па­ритетный результат двух или более химических субстратов.

Существуют три основных вида химического субстратного синтеза: элементарный, каталитический и информацион­ный, выясняется коренная особенность химического субстратного синтез состоящая в том, что переход в новое качество не может осуществлен отдельным самостоятельно существующим субстратом, поскольку он не обладает достаточным богатством вну­треннего .содержания и нуждается в существенном дополнении другим. В химическом развитии новое качество выступает как паритетный результат двух или более субстратов. По мере развития химическо­го в направлении к живому усиливается процесс субстанциализации, заключающийся в обогащении внутреннего содержания отдельного хи­мического субстрата как «субъекта изменений» (Маркс), повышении его роли в развитии химической формы материи как целого.

Субстратный синтез не является исключительном достоянием химической формы материи, – он существует также в физической форме, где выражен в четырёх основных видах, связанных о основными видами физического взаимодействия: гравитационным, слабым, электромагнитным и сильным. Субстратный синтез выступает в качестве общего для физичес­кой и химической форм материи способа объективно-реального суще­ствования и развития, однако он обладает в них своей существенной спецификой. Физические синтезы – суть масс-энергетические, т. е. синтезы, в которые непосредственно вовлечены масса и энергия как два важнейших свойства физической формы материи. Химический субстратный синтез — прежде всего над-массэнергетический синтез, хотя он и происходит с помощью физи­ческого (электромагнитного) синтеза, связанного с изменением вне­шней электронной оболочки атомов. В отличие от «суммарного» и «массового» характера физического синтеза (в особенности наиболее универсального — гравитационного), химический синтез имеет высо­коизбирательный характер, ибо происходит по законам химического сродства. Благодаря сродству, проявляемому качественно различными элементами друг к другу, химический синтез есть не просто притяже­ние субстратов, но их взаимное изменение с потерей ряда прежних и приобретением новых общих свойств. Это синтез избирательно вза­имодействующих качеств.

Химический субстратный синтез включает особый, специфиче­ски химический механизм — катализ, т. е. способность ускорения хи­мических превращений. В химической форме материи, таким образом, возникает своеобразная способность многократного самоускорения движения и развития.

Химический субстратный синтез — высшая и предельная фор­ма субстратного синтеза в природе. Как способ развития, субстратный синтез связан с относительно простыми субстратами и с определенно­го уровня сложности становится невозможным. Это объясняется уже тем, что более сложные субстраты обладают большой автономностью и не могут объединяться.

Закономерный характер химической эволюции

Детерминанты направленности химической эволюции

Направленность химической эволю­ции является прежде всего выражением, всеобщей направленности, определяющей всю бесконечную последовательность основных форм материй, вплоть до человека. Так как химическое возникает на физического и существует на его основе, химическая направленно­сть опирается на исходные для нее физическую направленность и направленность, заложенную в химических элементах. Последние заключает в себе тенденцию к соединению, к прямому субстратному синтезу и в этом смысле направленность развития является «апри­орной» по отношению к химической эволюции. На каждой ступени химической эволюции направленность развития дооформляется и развивается в ходе субстратных синтезов в этом плане выступает уже как «апостериорная».

Что определяет направленность химической эволюции от про­стого к сложному, к возникновению живого? По этому ключевому во­просу в естественнонаучной и философской литературе существуют две основные точки зрения. Одни ученые (А.И. Опарин, Дж. Бернал, В.И. Кузнецов) считают, что фактором, определяющим развитие хими­ческого в сторону живого, является химический отбор, который дает оценку развивающихся химических систем относительно среды. В процессе отбора таких химических систем сохраняются и продолжают эволюционировать все более сложные системы. «Выживаемость» хи­мических систем обусловлена усложняющимся химическим содержа­нием систем.

Согласно второй точке зрения направленность химичес­кой эволюции определяется внутренними ограничениями, вытекающи­ми из свойств химических элементов и их соединений. Не среда со­вершенствует химическое, а химическое совершенствует само себя при сопоставлении со средой (посредством химического отбора наи­более устойчивых систем). Активным фактором отбора оказывается, с этой точки зрения, само химическое, «отбор есть самоотбор «под углом зрения» соответствия среде». Фактически к этой точке зрения подходил и А.И. Опарин, который подчеркивал способность химичес­кой материи к саморазвитию.

В разработанной А.П. Руденко теории саморазвития открытых каталитических систем объектом химической эволюции рассматрива­ется не молекула, а каталитическая система, включающая взаимо­действующие молекулы, катализаторы и химическую среду. Основ­ным показателем развития каталитической системы является абсолют­ная каталитическая активность, рост которой служит основой эволю­ционных изменений каталитической системы, ее усложнения, которое происходит с нарастающей вероятностью.

Паритетность химических синтезов является относи­тельной, ибо химические элементы неравноценны по своему химичес­кому содержанию и, следовательно, эволюционному потенциалу. По­скольку наиболее богатым химическим элементом является углерод, с ним связано магистральное направление химической эволюции. Ато­мы углерода образуют так называемую полипептидную связь, после­довательность сотен тысяч атомов углерода, к которой могут присо­единяться любые другие химические атомы и их группы. Химическая эволюция приводит к появлению такого химического субстрата, кото­рый получает все более богатое химическое содержание и становится основой химической эволюции, приобретает автономность и устойчи­вость. Субстратный синтез теряет при этом свой прежний «паритет­ный» характер, постепенно исчерпывает себя, а развивающийся хими­ческий субстрат становится все более способным к самостоятельной эволюции, к саморазвитию. Важнейшим свойством такого субстрата оказывается самосохранение, которое осуществляется благодаря тому, что химическая диссоциация превращается в средство поддержания синтеза, поддержания целостности автономного субстрата. Когда хи­мический процесс оказывается таким образом «замкнутым на самого себя», т.е. становится средством поддержания целостности материаль­ной системы, химический субстрат превращается в живую материю, а химический процесс становится жизненным процессом. По глубокому замечанию Ф. Энгельса, жизнь — это самосохраняющийся химичес­кий процесс. Жизнь, таким образом, является закономерным и необхо­димым результатом химической эволюции природы.

Направленность химической эволюции на живое осуществляется посредством двух основных механизмов: химической изменчивости и химического отбора, которые по мере приближения химического к критическому периоду (скачку) усложняются, накапливают в себе потенциальное биологическое содержание. Изменчивость, как и от­бор, не носит чисто случайный характер, а имеет определенные «каналы», направленность, что, разумеется, не исключает случай­ности в предмутацноннсм процессе.

Основные ступени химичес­кой эволюции не случайны по отношению к сущности химической фор­мы материи, что их детерминация не сводится лишь к непосредственной, попарной связи друг с другом, а имеет сквозной характер. Одной из основных зако­номерностей развития является аккумуляция содержания – выражающей сущностную сторону развития.

Второй путь дальнейшего решения проблемы детерминации разви­тия связан с исследованием законов развития химической формы ма­терии, поскольку они выступают в качестве наиболее существенных детерминант развития. Периодический закон со своей физической стороны безусловно выступает как закон развития элементов, поскольку ядра атомов воз­никают в процессе ядерного синтеза и различаются по степени слож­ности. Но усложнение ядер атомов не является собственно химичес­кой эволюцией.

В своей общей формулировке периодичеокий закон явно выступа­ет как закон, выражающий лишь общее – периодическую зависимость свойств элементов вообще от их места в системе элементов. Но раз­вернутая интерпретация его с необходимостью включает в своя ука­зание на существование закономерной последовательности различных особенных. Детерминация особенного периодическим законом выража­ется, во-первых, в том, что этот закон в существенной мере обус­ловливает качественную неоднородность элементов, связанную о их различной сложностью и, следовательно, с различной ролью в хими­ческом мире и его эволюции. Детерминируя в определенной мере своеобразие углерода как химически наиболее сложного элемента, обладающего наивысшим эволюционным потенциалом, периодический закон в существенной степени детерминирует и общее направление химической эволюции от элементарного уровня до возникновения жи­вой материи. В этом смысле закон периодичности возникает вместе с началом химической эволюции (элементным уровнем химического) и является «априорным» по отношению ко всей последующей эволюции. Поэтому надо заключить, что основные этапы химической эволюции в существенной мере обусловливаются этим законом.

Включенность особенного в содержание закона отнюдь не озна­чает, что содержание особенного полностью заключено в нем. Спо­соб включения особенного в закон еще не получил достаточного исследования в философской литературе. Характеризуя его в некото­ром приближении, можно сказать, что особенное входит в закон час­тично, выражено в нем в виде тенденции. Поэтому периодический закон содержит в себе только какую-то сторону направленности раз­вития химического. В своем полном виде она выражена в сущности химической формы материи, в ее тенденции к прямым субстратным синтезам.

Детерминация развития химической формы материи своей внутренней стороной имеет противоречие меж­ду тенденцией к синтезу и тенденцией к диссоциации. Постоянно стремясь к синтезу, преодолевая в процессе его тенденцию к дис­социации, химическое закономерно развивается, поднимаясь с од­ной ступени на другую. Развитие химической формы материи в этом смысле предстает как процесс развертывания основного противоре­чия, как последовательность его ступеней или форм.

Аккумуляция

В химической эволюции обнаруживается одна из важнейших закономерностей развития — аккумуляция содержания низших ступе­ней в высших. Химическая эволюция представляет собой не простую смену одного состояния другим, а накопление, синтез основных резу­льтатов развития в последующих ступенях, в результате чего возника­ет материальный субстрат, обладающий наибольшим многообразием самых различных и даже противоположных свойств. Так, белки, один из важнейших компонентов живой материи, обладают кислотными и основными, гидрофильными и гидрофобными свойствами, обнаружи­вают все основные типы реакций. В нуклеиновых кислотах — втором важнейшем компоненте живой материи — благодаря их особой струк­туре происходит накопление информационного содержания в сжатой, кодированной форме.

Возникновение жизни обусловлено прежде всего магистраль­ным направлением химической эволюции, где химическая форма ма­терии выступает в своем оптимальном, или достаточно полном, соде­ржании или многообразии. Учитывая это обстоятельство, большинс­тво крупнейших химиков мира считают, что жизнь не может возни­кнуть на какой-либо иной, кроме углеродной, основе, например, на ба­зе кремния или азота, которые обладают несравненно меньшим, чем углерод, многообразием химических связей и, следовательно, мень­шим потенциалом развития. «Все данные физико-химических исследо­ваний, — пишет А.И. Опарин, — говорят нам о том, что иных форм соединений, ведущих к развитию жизни, не может быть». По мнению В.Г. Фесенкова, «во Вселенной органическая жизнь, если она вообще существует, может быть построена только на основе углеводородных соединений».

Аккумуляция содержания сопровождается его универсализапией. В процессе развития содержание не просто накапливается, но приоб­ретает все более общий характер, обогащается общими признаками (чертами). Тенденция к универсальному развитию химического суб­страта заложена в элементах-органогенах (способных к созданию молекул с самыми разнообразными функциональными группами, кон­фигурацией, размерами), широко распространенных во Вселенной. Зрелость и полнота этой тенденции зависят от ступени химической эволюции. На высшей ступени развития химического универсализация выражается в появлении такого субстрата (надмолекулярного ком­плекса), который может вступать в максимальное многообразие свя­зей и изменяться в соответствии с любыми изменениями среды. Та­кая сложность и универсальность химического субстрата становятся препятствием к его самостоятельному и устойчивому существованию. Самосохранение его оказывается возможным только в условиях био­логической организации. Однако универсальность надмолекулярного комплекса имеет множественный характер, т.е. остается универсаль­ностью множества частей. Живое в отличие от химического обладает общей реактивностью (общей реакцией организма на воздействия внешней среды), являющейся обобщением реакционных способностей химического комплекса.

Аккумуляция и детерминация яв­ляются двумя взаимообусловленными сторонами развития. Чем богаче, универсальнее химический субстрат, тем сильнее в нем выражено сущностное свойство материи «быть причиной самой себя». Аккумуля­тивный характер развития, таким образом, необходимо приводит к усилению самодетерминации развития.

Диалектика развития химической формы материи

В основу представления о способе развития химической формы материи Энгельсом было положено понятие химической реакции. Од­нако в последнем химический способ существования определен применительно к отдельным превращениям. Системный подход к совокупному миру, химических, превращений позволяет зак­лючить, что общим интегральным направлением химических превраще­ний является синтез. С химической точки зрения синтез и диссоци­ация неравноценны в силу самой природы химических элементов, имманентный сущностным свойством которых является способность к образованию связей (реакционная способность). С термодинамической точки зрения синтез также является более вероятным, чем распад, поскольку «интеграция всегда идет в направ­лении уменьшения общей свободной энергии системы» (Эндельгардт В. А.).

Наконец, общий взгляд на химический процесс в целом, идущий от элементов до макромолекулярного комплекса, лежащего в основе живого, дает основания признать, что диссоциация атомов не являет­ся равноценной синтезу. Тенденция химического к синтезу является абсолютной, а тенденция к, распаду - относительной.

Поскольку диалектика синтеза и распада есть частный случай соотношения противоположностей можно заключить, что син­тез и распад диалектически взаимосвязаны, но в тоже время не являются равноценными: синтез включает в себя распад в качестве своего внутреннего момента.

Неравноценность синтеза и распада в химическом процессе, дает основания для вывода о том, что сущность химического способа существования и развития состоит в прямом субстратном синтезе, формулой которого служит

В конкретном химическом аспекте процесс эволюции химичес­кой материи и возникновение живой материи описан теорией А.И. Опарина, считающейся наиболее вероятной гипотетической теорией происхождения жизни. Согласно этой гипотезе предбиологическая эволюция прошла несколько основных ступеней — органических ве­ществ (начиная с простейших соединений углерода СН, CN, СО) — высокомолекулярных полимеров (прежде всего первичных белков и простейших нуклеиновых кислот) — индивидуальных многомолеку­лярных систем, в результате направленной эволюции которых возни­кали первичные примитивные организмы.

В процессе химической эволюции обнаруживается глубинная, внутренняя логика развития, которая скрыта под частностями и «дета­лями» химического процесса и может быть выявлена только совмест­ными усилиями теоретической химии и философской науки. Как уже отмечалось, способом химического существования и развития являет­ся прямой субстратный синтез. Его основным внутренним противоре­чием является противоречие между субстратным синтезом как целост­ным процессом и включенным в него процессом химической диссоци­ации, или распада.

Диалектический «смысл» субстратного синтеза заключается в том, что химические вещества по отдельности не обладают достаточ­ным для саморазвития содержанием и поэтому химическая эволюция может осуществляться только посредством синтеза этих веществ. Преобладание, или абсолютность, химического синтеза ярко выражено уже на исходном уровне химической эволюции — в химических эле­ментах, основной тенденцией которых является тенденция к синтезу, а не распаду, что предопределено уже физической структурой элемен­тов — стабильностью атомного ядра и способностью электронных оболочек к электромагнитным взаимодействиям. Выражаясь гегелевс­ким языком, химические элементы и их соединения «определены к синтезу».

Исходной формой основного противоречия выступает противоре­чие химического элемента с самим собой. В химическом элементе в его неуничтожимой тенденции к синтезу потенциально заключены все последующие этапы развития химического с их противоречиями.

Противоречие химического с самим собой получает новый вид в химических соединениях, усложнение которых приводит к такому мо­менту, когда устанавливается непрерывное взаимодействие синтеза и диссоциации. Из их сложного взаимодействия, опосредованного отношением химического со средой, рождается основное противоречие живого – противоречие между тенденцией самосохранения и тенденцией приспособления.

Биологическая форма материи

Сущность жизни. Живая материя, как уже отмечалось, возника­ет в результате закономерного развития химической формы материи, когда последняя «выходит за свои собственные рамки» и становится «сам себя осуществляющим перманентным химическим процессом» (Энгельс). Гегель отмечал, что «если бы продукты химического про­цесса сами начинали действовать сызнова, то они были бы жизнью. В этом смысле жизнь есть увековеченный химический процесс».

Используя разумные соображения Гегеля, Энгельс дал первое в науке определение жизни как способа существования белковых тел. «Жизнь есть способ существования белковых тел, и этот способ су­ществования состоит по своему существу в постоянном самообновле­нии химических составных частей этих тел». Энгельсово определе­ние материи фиксирует субстратную и функциональную стороны жи­вой материи. В соответствии с данными науки XIX в. субстратом жиз­ни Энгельс считал белковые тела, включающие, наряду с белком как главным носителем жизни, жиры, углеводы и другие химические со­единения. С функциональной стороны (способ существования живого субстрата) жизнь рассматривалась как процесс самосохранения живо­го посредством постоянного саморазрушения и обновления химичес­ких составных частей субстрата.

В середине XX в. определение жизни, сохраняя основное мате­риалистическое содержание — трактовку жизни как способа сущес­твования высокоорганизованной материи, претерпело существенные изменения в своей собственно биологической части. Молекулярной генетикой была ракрыта огромная роль в явлениях жизни нуклеино­вых кислот — ДНК и РНК, выступающих в качестве важнейшей хими­ческой основы наследственности. В связи с этими и рядом других от­крытий биологии жизнь необходимо определить как способ существо­вания высокоорганизованного материального субстрата, основными химическими компонентами которого выступают белки, нуклеиновые кислоты, углеводы, жиры, некоторые минеральные соединения.

Сущностью жизни, или биологического способа существования, является тенденция к самосохранению путем приспособления к среде (адаптации). Замечательная особенность биологической формы мате­рии (БФМ) заключается в том, что если более простые материальные тела — физические и химические существуют в силу присущей им бо­льшей или меньшей устойчивости, то у живой материи самосохране­ние становится результатом активных процессов: на самосохранение направлена вся совокупность физических, химических и собственно биологических процессов живого организма. Это самосохранение воз­можно только благодаря активному приспособлению живых организ­мов к окружающей среде.

Заключение

В заключение следует сказать несколько слов о роли полученных философских знаний в моей диссертационной работе.

Во-первых, как уже отмечалось, углерод обладает наивысшим потенциалом химического развития. Именно поэтому начиная с 30-х годов и до настоящего времени в химии огромный интерес уделяется полимерам – веществам на основе углерода. Полимеры, к которым относятся и белки, основные компоненты живого, представляют высшую, наиболее сложную, а потому и малоизученную ступень развития химической формы материи. Изучение структуры высших ступеней химической материи следует начинать с её простейших небелковых форм, а именно α-полиолефинов, чему и будет посвящена моя диссертационная работа.

Во-вторых, представляет интерес изучение общей структуры и свойств смесей полимеров с нанокомпозитными глинами, т. е. системы высших и средних по степени организации представителей химической материи. Такие смеси обладают промежуточным физико-химическим способом взаимодействия компонентов и обладают целым рядом новых свойств, не наблюдающихся у них по отдельности. Данные структуры являются новой ступенью синтеза химической материи, не встречающуюся в природе. Развитие химической формы материи проявляется здесь в осуществлении прямого субстратного синтеза глины и полимерной смеси. В то же время ограниченность взаимодействия как полимеров между собой, так и их с глиной говорит о высокой развитости отдельных субстратов. Так как подобные исследования уже проводились в нашей лаборатории, то можно сказать, что этот синтез носит аккумулятивный характер. Этим исследованиям будет посвящена большая часть моей будущей диссертации.

В-третьих, данное развитие не является саморазвитием, а происходит вследствие взаимодействия химических форм с биологической и социальной формами материи, и является, таким образом, частью единого закономерного мирового процесса. Это означает, что будущая диссертация должна соответствовать общемировым научным, этическим, эстетическим, культурным и философским требованиям к своему содержанию.

Единый закономерный мировой процесс продолжает развиваться, и ускорение его развития обязано явлению катализа химической формы материи. Биологическая форма материи своим существованием во многом обязана ферментам – природным катализаторам. Их изучение также проводится в нашей лаборатории. Изучаются также и биодеградирующие полимеры – вещества не загрязняющие окружающую среду, имеющие биологическое происхождение.

Обобщая вышесказанное, можно сказать, что философское учение продолжает оказывать влияние на развитие конкретных наук, в частности химии, и остается важным инструментом для проведения дальнейших исследований в различных областях естествознания.

Список литературы

1.     Васильева Т.С. Химическая форма материи и закономерный мировой про­цесс. С. 89.

2.     Васильева Т.О., Орлов В.В. Химическая форма материи (химия, жизнь, человек). Пермь, 1983, с. 104.

3.     Кедров Б. М. Предмет и взаимосвязь естественных наук. М., 1967. С. 238.

4.     Волькенштейн М. В. Биофизика. М., 1981. С. 23.

5.     Менделеев Д.И. Основы химии. М.; Л., 1934. Т. 1.С. 255.

6.     Кузнецов В.И. Диалектика развития химии. М., 1973.

7.     Опарин А.И. Планеты и жизнь// Населенный космос. М., 1972. С. 166.

Рефераты. Leetmaster