Особенности интеллекта учеников специализированных классов (гуманитарного и математического)
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ
ПСКОВСКИЙ ГОСУДАРСТВЕННЫЙ
ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ
Кафедра психологии
студентка 5 курса физико-
математического факультета
Демченкова Елена Петровна
Дипломная работа
Особенности интеллекта учеников специализированных
классов (гуманитарного и математического)
Руководитель: ассистент кафедры
психологии Веселкова К.Е.
Псков 2004
Содержание TOC o "1-3" h z u
Введение. PAGEREF _Toc73467039 h 2
Глава 1 Теории, модели интеллекта и его развитие. PAGEREF _Toc73467040 h 6
1.1.2 Эксплицитные теории. PAGEREF _Toc73467043 h 7
1.2.1 Факторные модели интеллекта. PAGEREF _Toc73467045 h 17
1.2.2 Когнитивные модели интеллекта. PAGEREF _Toc73467046 h 25
1.3.1 Влияние среды на развитие интеллекта. PAGEREF _Toc73467048 h 33
1.3.2 Другие факторы интеллектуального развития. PAGEREF _Toc73467049 h 39
1.4 Взаимосвязь интеллекта с успеваемостью и профессиональной деятельностью h 49
1.4.1 Общий интеллект и успеваемость. PAGEREF _Toc73467052 h 49
1.4.2 Общий интеллект и профессиональная деятельность. PAGEREF _Toc73467053 h 51
2.1 Организация и методы.. h 55
2.2 Анализ результатов и интерпритация. h 58
Заключение. PAGEREF _Toc73467060 h 66
Источники. PAGEREF _Toc73467061 h 68
Введение
Всякий умный человек знает,
что такое интеллект ...
Это то, чего нет у других.
Из этого шуточного высказывания становиться ясно, что определений интеллекта, наверное, не меньше, чем людей, которые пытаются эти определения сформулировать.
Р.Стернберг просил людей описать характеристики интеллектуальной личности, и среди наиболее часто встречающихся ответов были: "хорошо и логично мыслит", "много читает", "сохраняет открытый ум", "глубоко понимает прочитанное".
В качестве рабочего определения: интеллект - способность приобретать, воспроизводить и использовать знания для понимания конкретных и абстрактных понятий и отношений между объектами и идеями и использовать знания осмысленным образом.
Все формы познания "высшего порядка" - формирование понятий, рассуждение, решение задач, память и восприятие связаны с человеческим интеллектом. Его невозможно оторвать от других когнитивных процессов. Он, строго говоря, не является одной из структур, стоящей наряду с другими структурами. Интеллект - это определенная форма равновесия, к которой тяготеют все структуры, образующиеся на базе восприятия, навыка и элементарных сенсорных механизмов.
Интеллект играет главную роль не только в психике человека, но и вообще в его жизни. Будучи самой совершенной из психических адаптации, интеллект служит наиболее необходимым и эффективным орудием во взаимодействиях субъекта с окружающим миром, взаимодействиях, которые реализуются сложнейшими путями и выходят далеко за пределы непосредственных и одномоментных контактов, для того, чтобы достичь заранее установленных и устойчивых отношений.
Общие структуры интеллекта отражают не только интеллектуальный опыт, но и общие закономерности, определяющие способность человека овладевать знаниями и производить их. Разграничение интеллекта (умственная способность) имеет существенное значение для понимания и исследования мыслительной деятельности человека. В ходе мыслительного процесса образуются определенные способы осуществления анализа, синтеза и т.д. (они могут осуществляться как в виде бессознательно складывающихся и автоматически функционирующих операций; анализа и синтеза, так и в виде сознательно выполняемых действий анализирования и синтезирования в соответствии с осознанными требованиями задачи). По мере того, как в процессе мышления складываются определенные операции - анализы, синтезы, обобщения, по мере того, как они генерализуются и закрепляются у индивида, формируется мышление, как способность, складывается интеллект.
Задача установления уровня интеллекта является одной из самых главных в психологии с момента оформления этой науки. Именно интеллектуальный показатель человека позволил охарактеризовать его психические и моральные качества. Установление количественных и качественных зависимостей этих показателей от уровня развития интеллекта позволил разработать разнообразные методики исследования интеллекта и связанных с ним качеств. Оценка интеллекта как специфической деятельности человека дала начало методикам подобно тесту Айзенка. Установление его структуры породило огромное количество тестов, исследуемых различные аспекты. Так появились тесты логического, образного, творческого и технического мышления. Тесно связанные с уровнем интеллекта оказались и тесты профессиональной пригодности.
В программу образования школ США и других развитых стран Европы включено использование методик проверки интеллекта в качестве оценочного, стимулирующего средства, вызывающего дополнительные мотивационные изменения. Таким образом, показатель интеллекта (не обязательно IQ) стал одним из важнейших показателей человеческой пригодности к той или иной деятельности, а в конечном итоге полезности человека как такового.
Известно, что интеллектуальное развитие у всех людей разное. Сейчас школы, да и жизнь, предъявляют все большие требования к интеллектуальному уровню школьников, также создаются специализированные классы и школы.
Чтобы попасть в специализированный класс или школу дети чаще всего сдают вступительные экзамены, по результатам которых происходит зачисление. При этом редко когда они проходят так называемые профориентированные тесты или тесты структуры интеллекта. При распределении детей по специализированным классам важную роль играет направленность интеллекта, т.е. уровень развития вербального, формального и пространственного компонентов. Эту направленность способностей и пытаются определить вступительными испытаниями. Но часто они не выполняют эту функцию и являются формальностью. На процесс распределения влияют и другие факторы, такие как желание ребенка (или его родителей) учиться в престижном классе, вместе с другом за компанию, чтобы потом проще было в институт поступить… В случае если определяющими становятся не способности ребенка, а какой-то из них, могут возникнуть трудности с учебой. Это может повлиять также на психологическое состояние ребенка и его дальнейшее развитие. Наличие детей с такой мотивацией в специализированных классах свидетельствует о несоответствии дифференциации школьников особенностям структуры их интеллекта.
Данная работа есть следствие возникшего предположения, что в специализированных классах гуманитарного и математического направлений присутствуют дети, умственные способности которых не соответствуют учебной программе. То есть направленность интеллекта не совпадает со специализацией.
Цель работы:
Выявить и изучить особенности интеллектуальной деятельности у учеников математического и гуманитарного классов.
Задачи:
1. Изучить теоретические аспекты данного вопроса.
2. Провести диагностику вербального и счетно-математического компонентов интеллекта школьников. Выявить различия, если они есть, в структуре интеллекта учеников дифференцированных классов. Сделать выводы: соответствует ли разделение учеников по специализированным классам особенностям структуры их интеллекта (уровню развития вербального и счетно-математического компонентов интеллекта школьников).
Вопрос распределения школьников в соответствии с их способностями важен в свете направленности современной педагогики на индивидуально-ориентированное обучение. В связи с этим в школе используются различные методы. Специализация один из них. Чтобы индивидуально-ориентированное обучение было успешным необходимо обеспечить эффективную работу используемых для этой цели методов. Данная работа представляет собой показатель эффективности специализации.
Глава 1 Теории, модели интеллекта и его развитие
1.1 Теории интеллекта
Теоретики интеллекта не согласны друг с другом во многом, и довольно странно, что они пришли к минимальному согласию в вопросе о том, что же такое интеллект помимо способности гибко адаптироваться к окружающей среде. Рассмотрим некоторые альтернативные взгляды, основанные на точке зрения Стернберга и Кауфмана.
1.1.1 Имплицитные теории
Сторонники этих теорий просят людей объяснить понятие интеллект «обычным языком». Этот подход был предложен Нейссером и осуществлен Стернбергом, Конвеем, Кетроном и Бернстейном и Стернбергом. Стернберг и др. опрашивали случайно выбранных людей, а также исследователей-теоретиков, занимающихся проблемами интеллекта, и предлагали им назвать наиболее показательные качества интеллектуального человека. Факторный анализ частотности оценок выявил три главных представления людей об интеллекте: как о способности решать практические проблемы (например, подведение баланса в чековой книжке), как о вербальных способностях (например, хорошо писать и говорить) и как о социальной компетентности (например, сосуществование с другими людьми) [10;28].
Тем не менее в этой обыденной точке зрения есть определенные ограничения. Одно из них относится к возрасту. Сиглер и Ричардc просили взрослых охарактеризовать интеллект применительно к людям различных возрастов. Они обнаружили, что взрослые в меньшей степени склонны связывать интеллект с перцептивно-моторной функцией и в большей — с функцией познания (в зависимости от возраста того, о ком они говорят). Так, для интеллекта детей представляется наиболее важной координация рук и глаз, в то время как способность к рассуждению более существенна для интеллекта взрослых. Границы имплицитных теорий связаны также с культурными традициями. В различных культурах интеллект воспринимается неодинаково[10;28].
Положения одной могут быть противоположны тем, на каких базируется другая. Западные представления об интеллекте, например, во многом отличаются от понятий других культур. Исследователи Джилл и Китс отметили различия в оценках студентов австралийского университета, которые считают интеллектом теоретические навыки и способность адаптироваться к новым событиям, и малайских студентов, рассматривающих интеллект как практические навыки, речь и творчество.
Исследования, проведенные в Африке, также предоставляют материал, контрастный полученному на Западе.
Интеллект в рамках разных культур и даже одной и той же всегда одинаков, но воспринимается он по-разному [12;135]. Какая бы ни была разница между культурами, существует несколько сходных аспектов интеллекта.
1.1.2 Эксплицитные теории
Эксплицитные теории интеллекта — это те, которые предложены психологами или другими учеными и проверены путем сравнения гипотез и собранных данных. Эксплицитные теории подразумевают разнообразные подходы к изучению интеллекта. Разделим их на психометрические, когнитивные, биологические, контекстуальные, или обусловленные контекстом культуры, и системные.
Психометрический подход
Одна из первых с начала XX в. теорий интеллекта состоит в том, что он может быть понят с позиции гипотетических ментальных сущностей, называемых факторами. Считается, что эти факторы являются источником индивидуальных различий, наблюдаемых нами в деятельности людей, будь то школа, работа или даже взаимоотношения в обществе [12;136]. Психометрические теории получили такое название потому, что основаны на измерении психологических свойств. Проверяются же они посредством измерения индивидуальных различий психологического функционирования людей. Индивидуально-дифференциальный подход заключается в том, что люди выполняют большое количество заданий, которые, по-видимому, предсказывают интеллектуальные успехи (в школе или на работе) [12;136]. В число тестов входят распознавание значений слов, нахождение вербальных и цифровых аналогий, определение того, какое из слов не относится к данному ряду, решение простых арифметических задач, завершение ряда чисел и наглядное представление пространственных отношений между абстрактными формами. Психологи привлекают данные таких заданий, чтобы проанализировать разные модели индивидуального решения проблем. Материалы обрабатываются при помощи так называемого факторного анализа, чтобы выявить факторы, определяющие человеческий интеллект.
Вероятно, наиболее распространенным факторным описанием интеллекта является иерархическое[6;94]. Хороший пример его был предложен Верноном, полагающим, что интеллект может быть описан как способности различных уровней обобщения. На вершине иерархии находится общая (генеральная) способность, как ее определял Спирмен (модель интеллекта Спирмена рассмотрена подробно в §2). На втором уровне располагается основная группа факторов, например вербально-образовательная способность, необходимая для успеваемости по таким предметам, как английский или история, и практически-механическая способность, необходимая для успешного изучения ремесел и механики. На следующем уровне находится младшая группа факторов, выделенная из основной группы, а внизу помещаются специфические факторы, отмеченные Спирменом. Эта иерархия устраняет лакуны, существовавшие между двумя крайними видами факторов, предложенных Спирменом [12;137]. Между общим и специфическими факторами находится группа факторов промежуточных уровней общности.
Другие широко известные иерархические модели были предложены Густафсоном, Хорном и Кэрроллом. Например, Кэрролл представил свою иерархическую модель интеллекта, основанную на факторном анализе. Разработанная Кэрроллом модель представляет собой иерархию, состоящую из трех пластов:
I — ограниченные, специфические способности (например, способность писать или произносить слово по буквам, быстрота рассуждения);
II — способности различных факторных групп (например, подвижный интеллект, гибкое мышление, дающее основание видеть все по-новому, и кристаллизованный интеллект, накопленная база знаний);
III — общий интеллект, аналогичный генеральному фактору интеллекта, указанному Спирменом. Из этих пластов, вероятно, наиболее интересен средний, в который входят помимо подвижных и кристаллизованных способностей процессы обучения и памяти, зрительного и слухового восприятия, поверхностное продуцирование идеи (подобно беглой речи) и быстрота (которая включает и абсолютную скорость реакции, и скорость точного реагирования) [12;137].
Биологический подход
Если психометрический подход направлен на определение того, чем индивиды отличаются друг от друга с точки зрения их умственных способностей, то биологический стремится понять внутреннюю локализацию способностей либо с точки зрения их функционирования (мозг и центральная нервная система), либо в связи с их наследованием (гены) [12;137]. Выдвигались самые разные биологические теории.
Самые ранние из них тяготеют к обобщениям. Одна из наиболее влиятельных теорий принадлежит Геббу, который различал два типа интеллекта: А и В. А — это врожденный потенциал, биологически детерминированный, способный к развитию. Гебб описывал его как «обладание хорошим мозгом и отличной нервной проводимостью». Интеллект В — это функционирование мозга, обеспечивающее развитие. Он обусловливает средний уровень успехов зрелого человека. Хотя при определении и того, и другого вида интеллекта равно необходимо совершить умозаключения, выводы об интеллекте А, по мнению Гебба, являются гораздо менее непосредственными, чем о В. Ученый утверждал, что большинство разногласий, касающихся интеллекта, — это утверждения об интеллекте А, или врожденном потенциале, а не об интеллекте В — зрелом функциональном уровне. Гебб также выделил интеллект С, представляющий собой баллы, полученные при тестировании. Он служит основой для определения любого из других типов интеллекта.
Больше всего Гебба интересовал интеллект А, и его нейропсихологическая теория об организации поведения — это попытка понять именно тип А. Ядром ее является представление о локализации клеток. Гебб выдвинул предположение, что повторные стимуляции определенных рецепторов приводят к формированию скопления клеток в мозге. У людей, обладающих большими умственными способностями, такие локализации более развиты, чем у других.
Влияние на исследования и тестирование интеллекта оказала также и биологическая теория Лурии. Исследователь выдвинул предположение, что мозг — это высокодифференцированная система, части которой отвечают за различные аспекты целого. Иными словами, отдельные области коры головного мозга взаимодействуют друг с другом, чтобы произвести мысли и действия самого разного рода. Ученый допустил, что в мозге содержится три основные единицы. Первая — ствол мозга и структуры среднего мозга, она отвечает за возбуждение. Вторая отвечает за входящие сенсорные функции. Третья — лобная часть коры головного мозга, она отвечает за организацию и планирование.
Некоторые биологические теории сфокусированы на связи между специализацией полушарий и интеллектом[12;139].
Сперри доказывал, что каждое полушарие ведет себя во многих отношениях как самостоятельный мозг. Сперри сделал вывод, что визуальные и пространственные функции являются преимуществом левого полушария. Однако возникли споры вокруг того, полностью ли отвечает левое полушарие за языковые способности. Леви в дальнейшем применил теорию Сперри к информационным процессам, отметив, что в левом полушарии стимулы обрабатываются и анализируются, в то время как правое воспринимает их в целом.
Газзанига утверждал, что правое полушарие мозга организовано как модули, относительно независимые друг от друга единицы, функционирующие параллельно[6;98]. Многие из них активизируются на уровне, который, не будучи сознательным, параллелен уровню осознанного мышления, что способствует процессу сознания. В левом полушарии эти модульные процессы подвергаются обработке. Способ восприятия им действий индивида не является понятным и не создает какого-либо определенного смысла. Иными словами, наши мысли относительно ясны в отличие от нашего понимания их. Некоторые сторонники биологической теории обращают внимание на то, что интеллектуалы действуют и думают быстрее, чем люди, обладающие меньшим интеллектом. Они объясняют это различие скоростью работы нервной системы, или механизмами нервной проводимости.
Изучение продолжительности реакции первоначально подтвердило это представление об интеллекте. Исследования продемонстрировали, что большее изменение в скорости реакций на стимулы (например, свет) связано с низкими оценками, полученными при тестировании способностей[12;140].
Одним из наиболее популярных биологических подходов является проверка связи между активностью мозга и интеллектом. В большинстве таких работ для измерения активности мозга исследуются вызванные потенциалы, которые представляют собой электрические реакции мозга во время прохождения (трансмиссии) нервного импульса. Хендриксон и Хендриксон выдвинули гипотезу, что ошибки случаются при прохождении информации через кору мозга[6;98]. Эти ошибки, совершающиеся, вероятно, в синапсах, влияют на изменение вызванных потенциалов. Следовательно, у индивидов с нормальной нервной системой, передающей информацию точно, правильные и доступные воспоминания сформируются быстрее, чем у тех, чья система «не отлажена» и поэтому делает ошибки при передаче импульсов[12;140]. Корреляция между измерением вызванных потенциалов и IQ у таких индивидов весьма устойчива, однако ее значение туманно и не могло быть повторено.
Один из наиболее интересных аспектов биологического изучения интеллекта предполагает проверку показателей метаболизма глюкозы в коре головного мозга. Ричард Хейер и его коллеги выяснили, что у более интеллектуальных людей уровень метаболизма ниже. Этот вывод позволил предположить, что более интеллектуальные индивиды прикладывают меньше усилий, такие задания. Однако суть установленной взаимосвязи нужно еще доказать. Остается непонятным: то ли более сообразительные люди затрачивают меньше глюкозы, то ли ее низкий метаболизм способствует проявлению более высокого интеллекта[12;140].
Наконец, рассматривалась роль наследственности при определении интеллекта. Этот предмет был тщательно изучен Стернбергом и Григоренко. Выяснилось, что приблизительно половина всех расхождений в баллах IQ объясняется генетическими факторами[12;141]. Процентное соотношение варьируется в зависимости от возраста; однако способность передавать IQ по наследству обычно увеличивается с возрастом. Также важно отметить, что многие исследователи доказывают невозможность четко разделить влияние наследственности и окружающей среды, отмечая, что нужно сосредоточиться на понимании того, как наследственность и среда совместно обусловливают интеллект или оказывают на него влияние.
Существует множество различных биологических подходов к изучению интеллекта[6;100]. Они дают интересное понимание связи между способностями и мозгом. Исследователи анализируют и количественные, и качественные различия между людьми. Следует отметить, что далеко не каждый, занимающийся биологическим направлением, считает его единственным путем к пониманию человеческих способностей. Биологические измерения помогут пролить свет на когнитивные процессы, равно как изучение когнитивных процессов позволяет понять биологическое функционирование.
Когнитивный подход
Он дополняет биологический, а не противоречит ему. Согласно когнитивному направлению, люди в процессе мышления выполняют ряд умственных операций; эти операции плюс порождающая их система и составляют базис интеллекта.
Данный подход, как и психометрический, восходит к работе Спирмена, предложившего три основных принципа познания:
понимание опыта представляет собой восприятие стимулов и связь с содержимым долговременной памяти — то, что мы сегодня называем кодированием;
выявление связей — взаимосвязь двух стимулов для понимания их сходства и различия, которую мы сейчас определяем как умозаключение;
выявление соотносительных понятий — использование умозаключений в новой области.
Когнитивный подход, предложенный Спирменом, не был востребован, пока Кронбах не замыслил слияние корреляционной и экспериментальной областей психологии. Но только в 1970-е гг. стали появляться исследования, содержащие эту задачу.
Исследования Ханта, Фроста и Ланнеборга, Ханта, Ланнеборга и Льюиса показали, что задания, недостаточно хорошо изученные в рамках когнитивных подходов, могут быть привлечены для понимания человеческого интеллекта[6;100]. Эти авторы предположили, что вербальные способности большей частью можно понять, приняв во внимание скорость доступа к лексической информации, хранящейся в долговременной памяти, и, чтобы проверить свое утверждение, они использовали задачи, предложенные Познером и Митчеллом.
Хант, Ланнеборг и Льюис предложили задание, предполагающее сравнение букв: субъектам показывали пары букв, типа «А-А», «А-а» или «А-В», и просили как можно быстрее указать, в чем идентичны буквы — по внешнему виду или же по названию. Разница во времени реакции, затраченной на два задания, рассматривалась как скорость доступа к лексической информации, хранящейся в долговременной памяти. При помощи различных подсчетов вычиталась из абсолютной скорости реакции на визуальную информацию та, что связана собственно с буквами. Хант и его коллеги полагали, что эта разница представляет собой оценку вербальной способности. Они отметили коэффициент корреляции около -0,3, сравнив подсчеты по задачам на обработку информации и психометрическим тестам интеллекта, и указали на связь меньшего времени реакции и более развитого интеллекта.
Альтернативный — когнитивно-компонентный — подход изучает время, которое затрачено на индивидуальные умственные процессы при выполнении более сложных заданий, например таких, как аналогии или завершение рядов[12;143]. Альтернативные когнитивные подходы служили изучению более сложных заданий. Наиболее известное из них — исследование искусственного интеллекта, при котором компьютер расценивают в качестве метафоры человеческого интеллекта.
Возможно, наиболее значительным вкладом в изучение искусственного интеллекта была разработка экспертных систем[6;105]. Они включают языковой процессор, облегчающий общение между пользователем и системой; базу знаний, подразделяющуюся на знание фактов и правил; истолкование, благодаря которому эти правила применимы; планирование, посредством чего обеспечивается последовательность их применения; программа непротиворечивости, изменяющая решения, когда новые данные противоречат старым; подтверждение, нацеленное на объяснение хода рассуждений системы[12;143]. Такие аспекты изучения обычно не связаны с моделированием когнитивных процессов человеческого мышления, а скорее направлены на создание наиболее эффективного и рационального процессора. Однако некоторые теоретики пытаются создать и такие программы, которые в состоянии моделировать человеческий интеллект. Наиболее примечательная среди них — модель ACT Андерсона. Он использовал ее, чтобы сравнить механизм обработки информации у человека и у компьютерной программы. Все традиционные теории искусственного интеллекта опираются на предположение, что человеческий интеллект по своей сути — это последовательная система обработки символов, и, следовательно, с помощью компьютера можно создать аналогичную модель. Тем не менее современные модели такого рода допускают параллельные механизмы обработки информации.
Контекстуальный подход
Хотя когнитивные подходы позволяют понять связь между умственными процессами и человеческими способностями, многие ученые утверждают, что они слишком ограничены и не могут измерить глубину интеллекта. Контекстуальные подходы базируются на идее сложности создания. Учитывая положения имплицитных теорий интеллекта, сторонники контекстуальных подходов считают, что интеллект невозможно понять вне культурного контекста.
Крайняя позиция — радикальный культурный релятивизм. Этот взгляд отражает предположение о существовании психологических универсалий в культурных системах[12;144]. Согласно этой точке зрения, интеллект нужно исследовать отдельно, в пределах каждой культуры — той системы, в которой создавалось его значение, и не применять стандартизированные тесты равно для всех культур без различения.
Приверженцы же более широкого взгляда признают и сходства, и отличия в представлениях об интеллекте. В книге Laboratory of Comparative Human Cognitive (1982) предлагается теория обусловленного компаративизма, в рамках которой сравнения культур возможны, если задачи для представителей различных культур оказываются равнозначными[12;144]. Проведенные в том же ключе перекрестные культурные исследования памяти показали, что успешное исполнение заданий на память зависит от того, насколько человек знаком с предметом. Люди добиваются наибольшего успеха, если имеют дело со знакомым содержанием, так что различие набранных двумя разными культурными группами баллов зависит и от того, какой материал используется при тестировании.
Контекстуальный подход критиковали за неясность понятия контекст. Берри и Ирвин предложили его четырехуровневую модель. Высший уровень — экологический контекст (естественная культурная среда обитания, в которой живет человек). Второй уровень — эмпирический (модель повторяющегося опыта), обеспечивающий условия обучения. Третий уровень — контекст исполнения, определенный набор условий окружающей среды, которые являются причиной того или иного поведения в конкретных границах пространства и времени. И самый низший уровень — экспериментальный, определяющий контекст, в котором будет проводиться исследование или тестирование.
Любой из этих уровней может влиять на исход задания, в том числе и тестов на интеллект. Обусловленные контекстом различия проявляются на разных уровнях — от общекультурных до специфических условий выполнения задач. При оценке интеллекта необходимо понимать потенциальные различия, которые влияют на различие баллов, полученных тестируемыми группами или же индивидами в различных условиях[6;107]. Однако учет одного лишь контекстуального влияния не помогает ответить на все вопросы об интеллекте. В идеале нужно принимать во внимание и познание, и контекст. Разработка более интегрированного подхода к изучению интеллекта — цель системных теорий.
Системный подход
Теоретики такого рода смотрят на интеллект как на сложную систему. Они объединяют элементы разных подходов, которые были рассмотрены выше. Два таких примера — это теория Гарднера о сложном множественном интеллекте и трехкомпонентная теория об интеллекте как умении добиваться поставленной цели. Эти модели интеллекта будут рассмотрены подробно далее.
1.2 Модели интеллекта
1.2.1 Факторные модели интеллекта
Условно все факторные модели интеллекта можно разбить на четыре группы по двум признакам:
1. Что является источником модели – умозаключение или эмпирические данные;
2. Как строится модель интеллекта – от отдельных свойств к целому или наоборот.
Типичными вариантами многомерной модели, в которой предполагается множество первичных интеллектуальных факторов, являются модели того же Дж. Гилфорда (априорная), Л. Терстоуна (апостериорная) и, из отечественных авторов, — В. Д. Шадрикова (априорная). Эти модели можно назвать пространственными, одноуровневыми, поскольку каждый фактор может интерпретироваться в качестве одного из независимых измерений факторного пространства[9;67].
Наконец, иерархические модели (Ч. Спирмена, Ф. Вернона, П. Хамфрейс) являются многоуровневыми. Факторы размещаются на разных уровнях общности: на верхнем уровне — фактор общей умственной энергии, на втором уровне — его производные и т. д. Факторы взаимозависимы: уровень развития общего фактора связан с уровнем развития частных факторов.
Таблица 1. Классификация факторных моделей интеллекта (по Дружинину)
Тип модели |
Априорные |
Апостериорные |
Пространственные одноуровневые |
Дж. Гилфорд |
Л. Терстоун |
Иерархические |
Ф. Верной, Д. Векслер |
Ч. Спирмен |
Конечно, реальное отношение между моделями интеллекта более сложно, и не все из них укладываются в эту классификацию, но предложенной схемой можно пользоваться, хотя бы в дидактических целях.
Перейдем к характеристикам моделей интеллекта, получивших наибольшую известность.
Модель Ч. Спирмена
Ч. Спирмен занимался проблемами профессиональных способностей (математических, литературных и прочих). При обработке данных тестирования он обнаружил, что результаты выполнения многих тестов, направленных на диагностику особенностей мышления, памяти, внимания, восприятия, тесно связаны: как правило, лица, успешно выполняющие тесты на мышление, столь же успешно справляются и с тестами на прочие познавательные способности, и наоборот, испытуемые, показывающие низкий результат, плохо справляются с большинством тестов. Спирмен предположил, что успех любой интеллектуальной работы определяют: 1) некий общий фактор, общая способность, 2) фактор, специфический для данной деятельности. Следовательно, при выполнении тестов успех решения зависит от уровня развития у испытуемого общей способности (генерального G-фактора) и соответствующей специальной способности (S-фактора). В своих рассуждениях Ч. Спирмен использовал политическую метафору. Множество способностей он представлял как множество людей — членов общества. В обществе способностей может царить анархия — способности никак не связаны и не скоординированы друг с другом. Может господствовать «олигархия» — успешность деятельности детерминируют несколько основных способностей (как затем полагал оппонент Спирмена — Л. Терстоун). Наконец, в царстве способностей может править «монарх» — G-фактор, которому подчинены S-факторы.
Исследования соотношений общих и специфических факторов при решении различных задач позволили Спирмену установить, что роль G-фактора максимальна при решении сложных математических задач и задач на понятийное мышление и минимальна при выполнении сенсомоторных действий[6;110].
Из теории Спирмена вытекает ряд важных следствий. Во-первых, единственное, что объединяет успешность решения самых различных тестов, — это фактор общей умственной энергии. Во-вторых, корреляции результатов выполнения любой группой людей любых интеллектуальных тестов должны быть положительными. В-третьих, для тестирования фактора «G» лучше всего применять задачи на выявление абстрактных отношений.
Дальнейшее развитие двухфакторной теории в работах Ч. Спирмена привело к созданию иерархической модели: помимо факторов «G» и «S» он выделил критериальный уровень механических, арифметических и лингвистических (вербальных) способностей. Эти способности (Спирмен их назвал «групповыми факторами интеллекта») заняли промежуточное положение в иерархии факторов интеллекта по уровню их обобщенности.
|
|
|
G |
A |
M |
L |
S |
S |
S |
S |
T |
T |
T |
T |
Рис. 1.1 Модель Спирмена
Впоследствии многие авторы пытались интерпретировать G-фактор в традиционных психологических терминах. На роль общего фактора мог претендовать психический процесс, проявляющийся в любом виде психической активности: главными претендентами были внимание (гипотеза Сирила Барта) и, разумеется, мотивация. Г. Айзенк интерпретирует G-фактор как скорость переработки информации центральной нервной системой. Он установил чрезвычайно высокие положительные корреляции между IQ, определяемым по высокоскоростным тестам интеллекта (в частности, тестам самого Г. Айзенка), временными параметрами и вариабельностью вызванных потенциалов мозга, а также минимальным временем, которое необходимо человеку для распознавания простого изображения. Однако гипотеза «скорости переработки информации мозгом» не имеет пока серьезных нейрофизиологических аргументов[9]. Тесты интеллекта, применяемые в такого рода исследованиях, включают только задания разного уровня трудности с закрытым ответом. Испытуемый должен выбрать за определенное время один правильный ответ из множества предложенных. Оценка эффективности определяется скоростью и правильностью выполнения задания.
Кроме тестов Айзенка для измерения фактора «G» применяются и другие тесты, в частности «Прогрессивные матрицы», предложенные Равеном в 1936 году, а, также тесты интеллекта Кэттелла.
Томсон выдвинул альтернативную интерпретацию. Он оспорил утверждение Спирмена о том, что генеральный фактор представляет собой единственный источник, лежащий в основе индивидуальных различий. Он предположил, что его появление обусловлено работой множества умственных соединений, включая рефлексы, ассоциативные связи между стимулами и т. п. Выполнение любой специфической задачи активизирует огромное количество этих соединений. Некоторые из них в самом деле требуются для выполнения любой задачи, предполагающей умственные усилия, и комбинации таких связей влияют на появление генерального фактора.
Модель Л. Терстоуна
В работах оппонентов Ч. Спирмена отрицалось наличие общей основы интеллектуальных действий. Они полагали, что определенный интеллектуальный акт является результатом взаимодействия множества отдельных факторов. Главным пропагандистом этой точки зрения был Л. Терстоун, который предложил метод многофакторного анализа матриц корреляций. Этот метод позволяет выделить несколько независимых «латентных» факторов, определяющих взаимосвязи результатов выполнения различных тестов той или иной группой испытуемых[9;73].
Первоначально Терстоун выделил 12 факторов, из которых наиболее часто в исследованиях воспроизводились 7:
V. Словесное понимание — тестируется заданиями на понимание текста, словесные аналогии, понятийное мышление, интерпретацию пословиц и т.д. W. Речевая беглость — измеряется тестами на нахождение рифмы, называние слов, принадлежащих к определенной категории.
N. Числовой фактор — тестируется заданиями на скорость и точность арифметических вычислений.
S. Пространственный фактор — делится на два подфактора. Первый определяет успешность и скорость восприятия пространственных отношений (узнавание плоских геометрических фигур). Второй связан с мысленным манипулированием зрительными представлениями в трехмерном пространстве. М. Ассоциативная память — измеряется тестами на механическое запоминание словесных ассоциативных пар.
Р. Скорость восприятия — определяется по быстрому и точному восприятию деталей, сходств и различий в изображениях. Разделяют вербальный («восприятие клерка») и «образный» подфакторы.
I. Индуктивный фактор — тестируется заданиями на нахождение правила и на завершение последовательности (по типу теста Д. Равена). Установлен наименее точно.
Факторы, обнаруженные Терстоуном, как показали данные дальнейших исследований, оказались зависимыми [6;111]. «Первичные умственные способности» положительно коррелируют друг с другом, что говорит в пользу существования единого G-фактора.
Однако в многочисленных исследованиях открывались и открываются все новые и новые «первичные умственные способности»[9;75].
На основе многофакторной теории интеллекта и ее модификаций разработаны многочисленные тесты структуры способностей. К числу наиболее распространенных относятся Батарея тестов общих способностей (General Aptitude Test Battery, GABT), Тест структуры интеллекта Амтхауэра (Amthauer Intelli-genz-Struktur-Test, I-S-T) и ряд других.
Модель Дж. Гилфорда
Дж. Гилфорд предложил модель «структуры интеллекта (SI)», систематизируя результаты своих исследований в области общих способностей. Однако эта модель не является результатом факторизации первичных экспериментально полученных корреляционных матриц, а относится к априорным моделям, поскольку основывается лишь на теоретических допущениях[6;112]. По своей имплицитной структуре модель основана на схеме: стимул — латентная операция — реакция. Место стимула в модели Гилфорда занимает «содержание», под «операцией» подразумевается умственный процесс, под «реакцией» — результат применения операции к материалу. Факторы в модели независимы. Таким образом, модель является трехмерной, шкалы интеллекта в модели — шкалы наименований. Операцию Гилфорд трактует как психический процесс: познание, память, дивергентное мышление, конвергентное мышление, оценивание.
Содержание задачи определяется особенностями материала или информации, с которой производится операция: изображение, символы (буквы, числа), семантика (слова), поведение (сведения о личностных особенностях людей и причинах поведения).
Результаты — форма, в которой испытуемый дает ответ: элемент, классы, отношения, системы, типы преобразований и выводы.
Каждый фактор в модели Гилфорда получается в результате сочетаний категорий трех измерений интеллекта. Категории сочетаются механически. Названия факторов условны. Всего в классификационной схеме Гилфорда 5x4x6 = = 120 факторов.
Он считает, что в настоящее время идентифицировано более 100 факторов, т. е. подобраны соответствующие тесты для их диагностики. Концепция Дж. Гилфорда широко используется в США, особенно в работе педагогов с одаренными детьми и подростками. На ее основе созданы программы обучения, которые позволяют рационально планировать образовательный процесс и направлять его на развитие способностей.
Главным достижением Дж. Гилфорда многие исследователи считают разделение дивергентного и конвергентного мышления[9;76]. Дивергентное мышление связано с порождением множества решений на основе однозначных данных и, по предположению Гилфорда, является основанием творчества. Конвергентное мышление направлено на поиск единственно верного результата и диагностируется традиционными тестами интеллекта. Недостатком модели Гилфорда является несоответствие результатам большинства факторно-аналитических исследований. Придуманный Гилфордом алгоритм «субъективного вращения» факторов, «втискивающий» данные в его модель, подвергается критике почти всеми исследователями интеллекта[6;113].
Операции |
Познавательные функции |
Память |
Дивергентное мышление |
Конвергентное мышление |
Оценка |
Элементы |
Результат |
Содержание |
Классы |
Отношения |
Системы |
Преобразования |
Применения |
А |
B |
C |
D |
E |
1 |
2 |
3 |
4 |
I |
II |
III |
IV |
V |
VI |
Образное |
Символическое |
Семантическое |
Поведенческое |
Модель Р.Б Кэттела
Предложенная Р. Кэттеллом модель может быть лишь условно отнесена к группе иерархических априорных моделей[6;114]. Он выделяет три вида интеллектуальных способностей: общие, парциальные и факторы операции.
Два фактора Кэттелл назвал «связанным» интеллектом и «свободным» (или «текучим») интеллектом. Фактор «связанного интеллекта» определяется совокупностью знаний и интеллектуальных навыков личности, приобретенных в ходе социализации с раннего детства до конца жизни и является мерой овладения культурой того общества, к которому принадлежит индивид.
Фактор связанного интеллекта тесно положительно коррелирует с вербальным и арифметическим факторами, проявляется при решении тестов, требующих обученности[9;76].
Фактор «свободного» интеллекта положительно коррелирует с фактором «связанного» интеллекта, так как «свободный» интеллект определяет первичное накопление знаний. С точки зрения Кэттелла, «свободный» интеллект абсолютно независим от степени приобщенности к культуре. Его уровень определяется общим развитием «третичных» ассоциативных зон коры больших полушарий головного мозга, и проявляется он при решении перцептивных задач, когда от испытуемого требуется найти отношения различных элементов в изображении.
Парциальные факторы определяются уровнем развития отдельных сенсорных и моторных зон коры больших полушарий[6;114]. Сам Кэттелл выделил лишь один парциальный фактор — визуализации, — который проявляется при операциях со зрительными образами. Наименее ясно понятие «факторов-операций»: Кэттелл определяет их как отдельные приобретенные навыки для решения конкретных задач, т. е. как аналог S-факторов по Спирмену, входящих в структуру «связанного» интеллекта и включающих операции, нужные для выполнения новых тестовых заданий. Результаты исследований развития (точнее — инволюции) познавательных способностей в онтогенезе, на первый взгляд, соответствуют модели Кэттелла.
Действительно, к 50-60-летнему возрасту у людей ухудшается способность к обучению, падает скорость переработки новой информации, уменьшается объем кратковременной памяти и т.д. Между тем интеллектуальные профессиональные умения сохраняются до глубокой старости.
Но результаты факторной аналитической проверки модели Кэттелла показали, что она недостаточно обоснована[9;78].
Можно предположить, что в ходе структурного исследований невозможно (об этом говорит сам Кэттелл) полностью отделить «свободный» интеллект от «связанного», и они при тестировании сливаются в единый генеральный спирменовский фактор. Однако при генетическом возрастном исследовании эти подфакторы можно развести.
SHAPE * MERGEFORMAT
S1 |
S2 |
S3 |
свободный |
связанный |
G-фактор Спирмена |
Факторы Терстоуна или факторы- операции Кэттелла |
Рис. SEQ 3._Отношение_моделей_Спирмена,_Кэттелла, * ARABIC 1.3. Отношение моделей Спирмена, Кэттелла, Терстоуна
Уровень же развития парциальных факторов в большей мере определяется опытом взаимодействия индивида с окружающим миром. Однако и в их составе возможно выделить как «свободный», так и «связанный» компоненты.
Само различие парциальных факторов определяется не модальностью (слуховой, зрительной, тактильной и пр.), а видом материала (пространственный, физический, числовой, языковой и т. д.) задания, что в конечном счете подтверждает мысль о большей зависимости парциальных факторов от уровня приобщенности к культуре (или, что точнее, от когнитивного опыта личности).
Кэттелл попытался сконструировать тест, свободный от влияния культуры, на весьма специфическом пространственно-геометрическом материале (Culture-Fair Intellegence Test, CFIT) [6;115]. Тест был опубликован в 1958 году.
1.2.2 Когнитивные модели интеллекта
Когнитивные модели интеллекта имеют косвенное отношение к психологии способностей, так как их авторы подразумевают под термином «интеллект» не свойство психики, а некую систему познавательных процессов, обеспечивающих решение задач[9;78]. Индивидуальные различия в успешности выполнения задач психологи выводят из особенностей индивидуальной структуры, обеспечивающей процесс переработки информации. Факторно-аналитические данные, как правило, используются для верификации когнитивных моделей. Тем самым они служат как бы промежуточным звеном, связывающим факторно-аналитические концепции с общепсихологическими.
Модель Р.Стернберга
Наибольшую известность в конце 80-х—начале 90-х годов получила концепция интеллекта Роберта Стернберга. В 1972 году он закончил с отличием Йельский университет, а затем —аспирантуру в Стэнфордском университете. Сейчас он работает профессором психологии в Йеле[9;78].
Так называемая «иерархическая модель интеллекта» должна была объяснить отношения между: интеллектом и ментальными процессами, регулирующими поведение; интеллектом и личным опытом индивида; интеллектом и адаптивным поведением. Интеллект обеспечивает переработку информации. Модель Стернберга относится к числу скорее общепсихологических, нежели дифференциально-психологических концепций[6;78].
Стернберг выделяет три типа компонентов интеллекта, отвечающих за переработку информации;
I. Метакомпоненты — процессы управления, которые регулируют конкретные процессы переработки информации. К их числу относятся: 1) признание существования проблемы; 2) осознание проблемы и отбор процессов, пригодных для ее решения; 3) выбор стратегии; 4) выбор ментальной репрезентации; 5) распределение «умственных ресурсов»; 6) контроль за ходом решения проблем; 7) оценка эффективности решения.
II. Исполнительные компоненты — процессы более низкого уровня иерархии. В частности, в так называемый процесс «индуктивного мышления» (успешность его определяется фактором G) входят, по мнению Стернберга, кодирование, выявление отношений, приведение в соответствие, применение сравнения, обоснование, ответ. У. Найсер, критикуя позицию Стернберга, утверждает, что количество исполнительских компонент может быть бесконечным, а их особенности определяются особенностями задач.
Ш. Компоненты приобретения знаний необходимы для того, чтобы субъект научился делать то, что делают метакомпоненты и исполнительные компоненты. Стернберг относит к их числу: 1) избирательное кодирование; 2) избирательное комбинирование; 3) избирательное сравнение.
Главное для человека в ходе познания — отделить релевантную информацию от нерелевантной, сформировать из отобранной информации непротиворечивое целое[9;79].
В ходе решения задачи компоненты работают согласованно: метакомпоненты регулируют функционирование исполнительных компонентов и «познавательных», а те в свою очередь обеспечивают обратную связь для метакомпонент.
Наиболее детально и обоснованно в концепции Р. Стернберга описан уровень метакомпонент. Он полагает, что основная трудность при решении задач состоит не в самом решении, а в правильном понимании сути задачи. Так, дети - олигофрены отличаются от нормальных детей тем, что нуждаются в полном и. ясном объяснении условия задачи и путей ее решения. Таким образом, интеллект есть способность учиться и решать задачи в условиях неполного объяснения[9;79].
Стернберг приводит аргументы и относительно важности выбора стратегий, но в целом они сводятся к объяснению предпочтений при решении разных задач меньшей нагрузки на кратковременную память[6;117]. Причем в его аргументации фигурируют всего три типа стратегий: аналитическая, пространственно-синтетическая и вербальная, что тождественно групповым факторам интеллекта.
Но главным в исследовании Р. Стернберга является изучение роли ментальных репрезентаций информации при решении задач[6;117]. Очевидно, что вид предпочитаемой репрезентации знаний зависит не от содержания задачи, а от индивидуальной структуры основных факторов интеллекта, но, Стернберга не очень интересуют индивидуальные различия. Весьма интересным, фактом, установленным Р.Стернбергом в результате экспериментов, является следующий: испытуемые, решающие задачи наиболее успешно, тратят относительно больше времени на планирование, выбор стратегии и кодирование условий задачи и очень мало — на ее исполнение (операции с информацией). Неясно, однако, тратят ли они больше времени на планирование и репрезентацию по сравнению со «средним испытуемым» либо по сравнению с собственным исполнительским этапом[9;79]. Главным фактором, который всплывает в аргументации Стернберга, является фактор внимания. Он постоянно подчеркивает важность распределения ресурсов внимания относительно важных и неважных этапов задачи, а также значения контроля над процессом решения. Разумеется, внимание выступает как бы опосредующим звеном между блоком регуляции и планирования поведения (по А. Р. Лурия) и блоком когнитивным.
SHAPE * MERGEFORMAT
Мотивация и регуляция |
Внимание |
Интеллект |
Рис.1.4. Отношения между мотивацией, вниманием и интеллектом
Поскольку Стернберг сосредоточивает свой исследовательский интерес на факторах «внешних» по отношению к интеллекту, то на первый план у него неизбежно выходят избирательность, ресурс внимания, контроль и т. д. А собственно интеллект теряется в «исполнительных компонентах» и «стратегиях».
Интеллект, по Стернбергу, лучше измерять в тех областях, где задачи являются для индивида относительно новыми, а когнитивные навыки находятся в стадии автоматизации[6;117].
Стернберг считает, что его данные хорошо согласуются с концепцией Кэттелла и данными факторно-аналитических исследований.
К сфере взаимодействия интеллекта с окружающим миром относятся такие проявления, как практический и социальный интеллект. По мнению Стернбенга интеллект служит целям обеспечения отношений индивида с внешней средой. Он выделяет три типа таких отношений: адаптацию, внутренний выбор и конструирование. В адаптивной функции интеллекта Стернберг видит причину критериальных различий в его структуре, в частности, высокая ценность времени, признанная западной культурой, объясняет, с его точки зрения, почему тесты интеллекта включают лимит времени и выявляют временные параметры. Медленные и осторожные испытуемые остаются в проигрыше. Но не все культуры характеризуются таким бережным отношением ко времени.
Такие типы отношений индивида со средой, как внутренний выбор и конструирование (формирование), скорее декларируются, чем объясняются в концепции Стернберга[6;118]. На консервативного исследователя концепция Стернберга производит впечатление незаконченной стройки в центре старого города: общий план реконструкции есть, но уж слишком он плохо привязан к местности; фундаменты новых сооружений (факты и закономерности) стоят, но стен еще нет; в строительстве используются части зданий, построенных другими архитекторами (без указания авторства) и т. д. [9;79].
Концепции Айзенка и Стернберга противоположны по направленности, Айзенк — последовательный «монист», сторонник простых моделей. Стернберг — сторонник многообразия и сложности. Айзенк сторонник «скоростного» фактора. Все эксперименты Стернберга и его аргументация направлены на отрицание роли скорости переработки информации для продуктивности интеллектуального процесса. Айзенк последовательно проводит линию «психофизиологической редукции». Стернберг обращается к обыденному объяснению, экологическим и культурным обоснованиям.
Стернберг выступает главным оппонентом концепций «hard way» (жесткий путь), как их обозначил Вернон. Стернберг критикует Айзенка за попытку свести интеллект к нейрофизиологическим показателям. С его точки зрения, корреляционный подход, основанный на соотнесении параметров когнитивных задач с оценками школьных достижений и данными тестирования интеллекта, также не оправдывает себя.
Другие когнитивные модели
Одним из часто упоминаемых вариантов «обыденного подхода» к интеллекту является модель X. Гарднера, давнего оппонента Р. Стернберга.
Как и последний, Гарднер критикует «hard way» и трактует интеллект очень широко. Он считает, что можно говорить о множестве видов человеческого интеллекта. Главным методом изучения человеческого интеллекта, на его взгляд, является не эксперимент, не измерение и даже не опрос на предмет выявления «обыденных моделей», а наблюдение за естественным поведением индивидов в ходе лонгитюдного исследования[6;118]. А тесты, интервью и прочие инструментальные методы пригодны лишь для измерения когнитивных навыков, мотивации и общей активности личности.
Гарднер выделяет в качестве основных компонентов интеллекта, помимо традиционных (по Терстоуну): музыкальные способности, мотивацию, инициативу, сенсомоторные способности и т. д. В одной из последних своих работ он рассматривает 7 видов интеллекта:
1. Лингвистический интеллект. Характеризуется способностью использовать естественный язык для передачи информации, а также стимулирования и возбуждения (поэт, писатель, редактор, журналист).
2. Музыкальный интеллект. Определяет способность исполнять, сочинять музыку и/или получать от нее удовольствие (исполнитель, композитор, музыкальный критик).
3. Логико-математический интеллект. Определяет способность исследовать; классифицировать категории и предметы, выявлять отношения между символами и понятиями путем манипулирования ими (математик, ученый).
4. Пространственный интеллект — способность видеть, воспринимать и манипулировать объектами в уме, воспринимать и создавать зрительно-пространственные композиции (архитектор, инженер, хирург).
5. Телесно-кинестетический интеллект — это способность использовать двигательные навыки в спорте, исполнительском искусстве, ручном труде (танцовщик, спортсмен, механик).
6. Межличностный интеллект. Обеспечивает способность понимать других людей и налаживать с ними отношения (учитель, психолог, продавец).
7. Внутриличностный интеллект. Представляет способность понимать себя, свои чувства, стремления (психолог, поэт).
Попыткой синтеза факторного и когнитивного подходов стала работа А. Деметриу, А. Эфклидиса и М. Плачидова. Авторы являются сторонниками многофакторной теории личности Терстоуна. Их выводы основываются на многолетнем лонгитюдном исследовании способностей большой группы испытуемых. В ходе психодиагностического исследования были применены тесты структуры интеллекта, а также задачи Ж. Пиаже.
За основу классификации способностей были взяты три основных аспекта реальности, отражаемых психикой человека: физический, пространственный и символический[9;81]. В результате была разработана шестифакторная модель способностей:
1-й фактор. Способность оперировать количественными отношениями. Формирование этой способности происходит от 3 до 22 лет. Авторы выделяют 9 степеней ее развития: от непараметрического мышления — к многомерному параметрическому.
2-й фактор. Способность к качественному анализу и формированию категорий и классификаций. Развитие происходит от 3 до 18 лет, имеет 7 ступеней: от доаналитической до многокритериальной.
3-й фактор. Пространственная способность, ответственная за пространственную репрезентацию внешней среды. Пространственная способность развивается с 3 до 13 лет и проходит в своем развитии шесть ступеней: от статических репрезентаций к динамическим, то есть поддающимся многократным преобразованиям.
4-й фактор. Способность к оценке причинно-следственных связей и отношений. Считается, что с 3 до 18 лет эта способность проходит шесть ступеней развития: от допричинного уровня к уровню проверки гипотез.
5-й фактор. Вербальный. С 3 до 18 лет способность развивается от уровня простых суждений к логическому выводу на основе формальных и содержательных правил, проходя шесть ступеней.
6-й фактор. Вслед за Стернбергом авторы назвали его метакогнитивным. В него входят чувства, идеи, знания, опыт, а также способность реалистически оценивать себя, способность регулировать свое поведение, то, что называется «житейской мудростью». Эта способность развивается на протяжении всей жизни.
Факторы неортогональны, хотя, по мнению авторов, развиваются на протяжении времени параллельно и относительно независимо друг от друга[9;81].
1.3 Развитие интеллекта
Наиболее разработанная теория интеллектуального развития была предложена швейцарским ученым Жаном Пиаже[9;150]. Он выделил в этом развитии четыре стадии.
Сенсомоторная стадия охватывает период младенчества. Ребенок ищет предметы, которые вышли из поля зрения, и может в какой-то степени предполагать, где они находятся. Он способен также координировать информацию, поступающую от разных органов чувств. Другое значительное достижение на данной стадии – развитие способности к целенаправленным действиям.
Стадия дооперационального мышления. На этой стадии начинает формироваться вербальное и понятийное мышление.
Стадия конкретных операций. На третьей стадии, начинающейся примерно в семь лет, ребенок в состоянии рассматривать проблемы на понятийном уровне и приобретает простейшие представления о таких категориях, как пространство, время и количество.
Стадия формальных операций начинается примерно с 11-ти лет. Мышление ребенка систематизируется, он способен определять следствия, исходя из причин какого-либо явления.
Связующим звеном между стадиями служат те признаки, развитие которых переходит из одной стадии в другую. Новые знания и умения ребенок приобретает постепенно. Маленький ребенок отличается от старшего не только уровнем развития, но и тем, что он способен действовать соответственно своему уровню лишь в оптимальных условиях, а при стрессе начинает вести себя менее адаптивно. С возрастом устойчивость к стрессу повышается.
1.3.1 Влияние среды на развитие интеллекта
Различают три типа моделей, объясняющих влияние социальной микросреды на интеллект детей[9;150].
В первой группе моделей постулируется решающее значение общения родителей с детьми, среди прочих факторов, влияющих на развитие детского интеллекта. Предполагается, что продолжительность общения между родителем и ребенком является основным фактором, влияющим на интеллект. Данные психологических исследований не подтверждают эту модель: согласно ей, корреляции уровней интеллекта детей и интеллекта матерей должны быть выше, чем отцов и детей, что не наблюдается[13;44]. Основной недостаток этой модели — игнорирование эмоционального отношения ребенка к родителю, ведь влияние оказывает субъективно значимый другой, то есть не обязательно тот родитель, с которым ребенок фактически проводит больше времени, а тот, с которым он себя отождествляет.
Близка к этой позиции идентификационная модель. Она предполагает, что в ходе социализации ребенок осваивает новые роли, и при идентификации ребенка с родителем того же пола первый овладевает способами поведения, характерными для родителя. Неясно, однако, почему «значимым другим» должен быть родитель, с половой ролью которого идентифицирует себя ребенок[9;151].
Наконец, третья модель, автором которой является Р. Зайонц, прогнозирует зависимость интеллекта ребенка от числа детей в семье. Это единственная из моделей, находящая эмпирическое подтверждение, и далее рассмотрим ее более подробно.
Чистые «средовые» модели в настоящее время не находят подтверждения[13;44]. Наибольшей популярностью пользуется модель генетико-средовых взаимодействий, предложенная Р. Пломином с коллегами. Пломин постулирует наличие двух аспектов рассмотрения психических особенностей человека: «универсального» и «индивидуального». Если индивиды обеспечены условиями для нормального развития, то их индивидуальные различия не могут быть объяснены с помощью «общих» закономерностей социального взаимодействия. То есть детерминанты общевидовых закономерностей развития могут не совпадать с детерминантами индивидуальных различий.
Пломин различает три типа корреляции генотипа и среды:
1) пассивное влияние — когда члены одной семьи имеют и общую наследственность, и общую среду; наблюдается неслучайное сочетание генотипа и среды;
2) реактивное влияние — реакция среды на проявления врожденных особенностей индивида, которая может привести к формированию определенных личностных черт;
3) активное влияние — индивид либо активно ищет, либо создает среду, которая в наибольшей степени соответствует его наследственности.
Существует предположение, что в ходе развития ребенка тип генотип-средовых корреляций изменяется последовательно от пассивного к реактивному и активному[8;190].
«Средовая» исследовательская программа в настоящее время практически зашла в тупик[13;45]. По крайней мере, результаты, полученные ее сторонниками, гораздо менее впечатляющи, чем результаты исследований, проведенных в рамках «генетической» программы.
Решающим средовым фактором развития интеллекта детей признается «психическая стимуляция», происходящая при общении и совместной деятельности ребенка и взрослых[6;128]. Замечено, что если детей воспитывать в детском саду, где общение ребенка со взрослым сводится к минимуму, так как на одного воспитателя приходится свыше 10 детей, то они отстают от своих сверстников, воспитанных в семье, в интеллектуальном и сенсомоторном развитии.
В течение последних тридцати лет проведены сотни исследований, в которых изучалось влияние так называемого «социального положения»[9;153]. Практически во всех исследованиях фиксируется более высокий уровень интеллекта у детей из привилегированных слоев общества по сравнению с детьми из бедных семей. Однако те же исследования показывают, что IQ детей, родившихся в пролетарских семьях, но воспитанных в семьях «среднего класса», на 20-25 баллов выше, чем интеллект их братьев и сестер, воспитанных биологическими родителями.
К числу моделей, рассматривающих влияние «интеллектуальной стимуляции» на развитие детей, принадлежит и модель Р. Зайонца[6;130]. Зайонц предположил, что от числа детей в семье зависит ее «интеллектуальный климат». Каждый член семьи (и родители, и дети) имеет определенный интеллектуальный уровень. Этот интеллектуальный уровень может быть выражен определенным числовым индексом. Каждый член семьи влияет на всю семью, и семья влияет на него. Преимущество в интеллектуальном развитии принадлежит первенцам, поскольку они получают больше родительского внимания и дольше, чем позднерожденные дети, взаимодействуют с родителями. Братья и сестры, родившиеся через небольшой промежуток времени, сходны с близнецами, они конкурируют за родительское внимание, кроме того, если они взаимодействуют не с родителями, а друг с другом, то уменьшается «интеллектуальная стимуляция» (эффект выявлен на близнецах). Проще говоря, суммарный интеллектуальный потенциал семьи делится на всех членов, и результат от этого деления равен величине показателя «интеллектуального климата».
Рис.1.5. Зависимость интеллектуальных способностей детей от порядка рождения по Зайонцу.
SHAPE * MERGEFORMAT
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
Место в семье (по порядку рождения) |
Количество детей в семье |
Интеллектуальные потенции |
Модель предсказывает замедление интеллектуального развития старших детей при рождении младенца, но, по данным Зайонца, этот эффект наблюдается только тогда, когда старшие дети не достигли 14-летнего возраста[6;130].
Модель Зайонца предсказывает отрицательное влияние на развитие интеллекта очередности рождения детей в раннем возрасте до 3 лет, положительный эффект для детей от 4 до 9 лет, отсутствие эффекта для детей от 9 до 12 лет, а затем возрастающее отрицательное воздействие.
Модель Зайонца оказалась пригодной для прогнозирования IQ, но не для прогнозирования креативности[9;153].
Общение со сверстниками не рассматривается в теории Зайонца как положительный фактор. Существуют, по крайней мере, еще две теории, которые рассматривают взаимодействие ребенка со взрослым или со сверстниками как факторы интеллектуального развития. Пиаже считал, что обсуждение интеллектуальной проблемы ровесниками, взгляды которых различны, приводит к децентрации (преодолению эгоцентризма в мышлении) и к интенсивному развитию когнитивных операций.
Противоположной взглядам Пиаже считается позиция Л. С. Выготского, который подчеркивал ведущую роль взрослого в детерминации интеллектуального развития ребенка. В экспериментах Д. Таджа, который проверял влияние взаимодействия детей в паре на их интеллектуальную продуктивность, были получены весьма интересные результаты: уступающие в продуктивности партнеры достигли прогресса после взаимодействия, тогда как у превосходящих партнеров наблюдался заметный регресс в успешности решения задач. Ухудшение, по сравнению с индивидуальной деятельностью, но менее выраженное, было выявлено и при работе с одинаковым по интеллекту партнером[16;70]. Однако было обнаружено, что у мальчиков наблюдалась тенденция к прогрессу, а у девочек — к регрессу.
Но наибольший интерес представляет следующий факт: если оповещать детей о результате решения задачи, дети, работающие индивидуально, прогрессируют более значительно, чем работающие в паре. И только при отсутствии обратной связи у детей, работающих в паре, наблюдается улучшение качества решения задач[16;70].
Эти эксперименты полностью соответствуют модели Зайонца. «Интеллектуальный климат» пары детей складывается из их индивидуальных вкладов и делится (в соответствии с моделью) на число партнеров. Отсюда возникает эффект «регрессии к среднему»: снижение продуктивности у успевающих и повышение ее у отстающих. «Обратная связь» (сообщение результата) — это включение «идеального взрослого», что способствует повышению продуктивности работы детей. На самом деле дети работали не индивидуально, а совместно с человеком, осуществляющим «обратную связь».
Влияние среды на развитие интеллекта несомненно. Если верить оценкам, которые дают разные исследователи, в детерминации общего интеллекта на долю среды приходится 30-35 % общей фенотипической дисперсии, а на долю взаимодействия среды и генотипа — около 20 %[6;131]. Наиболее подвержены средовым воздействиям невербальный интеллект, сенсомоторные способности, парциальные способности (восприятие, память и т. д.). Создается впечатление, что способности, за которые отвечают периферические системы, обеспечивающие непосредственное взаимодействие личности с внешним миром, развиваются в процессе этого взаимодействия, а под влиянием изменения парциальных способностей изменяются общие (интеллект и пр.). Парциальные способности выступают как бы «модераторами», посредниками и переносчиками влияния cредовых факторов на латентную структуру, свойством которой является интеллект[9;155].
Итак, роль генотипа в детерминации вариации способностей больше, чем роль среды, если:
1) способность является общей, а не специальной;
2) способность тесно связана с общим интеллектом;
3) способность не влияет непосредственно на моторно-перцептивное взаимодействие индивида со средой;
4) способность является специфически человеческой, видовым признаком Homo sapiens (например, вербальная).
Отсюда следует, что специфические человеческие способности являются латентными и проявляются через специальные способности, подверженные воздействиям среды.
Условно схему модели, описывающую детерминацию развития способностей, можно изобразить в следующем виде.
Среда |
Генотип |
Общая способность |
Специальные способности |
Свойства отдельных систем |
Вербальная |
Числовая |
Пространственная |
Рис.1.6 . Уточненная психогенетическая модель развития способностей (В. Н.Дружинин)
1.3.2 Другие факторы интеллектуального развития
Развитие интеллекта зависит от тех же факторов, что и развитие других функций организма, т.е. от генетических и иных врожденных факторов, с одной стороны, и от окружающей среды - с другой[8;195].
Генетические Факторы
Генетические факторы представляют собой тот потенциал, который ребенок получает с наследственной информацией от своих родителей. Именно он служит основой для тех возможностей, которые будут использоваться организмом по мере его роста и созревания для эффективного взаимодействия с окружающей средой.
В большинстве случаев о наличии или отсутствии того или иного генетического фактора можно судить только после рождения ребенка. Кроме того, еще неизвестно, обусловлена та или иная способность отдельными генами или их сочетаниями и как происходит формирование этих способностей на уровне физиологии нервной системы.
Единственное, что психологи знают наверняка, это то, что в определенной степени от этих факторов зависит направление интеллектуального развития индивидуума. Однако если человеку передаются по наследству такие-то интеллектуальные механизмы или, по крайней мере, "сырье" для построения таких механизмов, то это ещё не значит, что индивидуум наследует определенный уровень "чистого интеллекта", зависящий от уровня его родителей.
Другие врожденные факторы
Это такие факторы, которые действуют во время развития организма от момента оплодотворения яйцеклетки до рождения. К ним могут относиться хромосомные аномалии, возникающие еще до оплодотворения, неполноценное питание или определенное заболевание матери во время беременности, а также употребление ею лекарственных и иных веществ, вредных для плода.
Сильные нарушения физического и психического равновесия у матери могут оказывать влияние, тотчас необратимое, на реализацию генетического потенциала ребенка и затруднить последующее взаимодействие его с окружающей средой.
Хромосомные аномалии
Некоторые хромосомные аномалии передаются по наследству, однако очень многие из них связаны с какими-то нарушениями в процессе образования сперматозоида или яйцеклетки, что касается, в частности, болезни Дауна, а также некоторых аномалий, связанных с набором половых хромосом.
Аномалии, связанные с патологией половых хромосом, обусловлены тем, что в ядре оплодотворенной яйцеклетки либо отсутствует хромосома X или У, либо имеется лишняя половая хромосома того или другого типа. Подобные аномалии приводят не только к изменению половых признаков, но и чаще всего сопровождаются задержкой умственного развития, которая может быть причиной умственной отсталости.
Нарушение питания плода
Клетки головного мозга развиваются, в основном, во время внутриутробного периода и поэтому для синтеза ДНК и других компонентов, необходимых для их нормальной деятельности, в этот период им требуются разнообразные питательные вещества. Вероятно, что серьезные нарушения питания матери могут оказать влияние на последующую умственную деятельность.
Наиболее ярким примером служит кретинизм - дефект умственного развития, возникающий у детей в изолированных горных селениях из-за недостатка йода в рационах у женщин.
Проблемы развития детей и их здоровья, с которыми сталкиваются большинство бедных и развивающихся стран, во многом связаны с недостаточным питание населения. Однако, вполне возможно, что они усугубляются из-за влияния плохого питания женщин на умственное развитие их детей. В результате интеллектуальный потенциал, необходимый для эффективного решения жизненных проблем, оказывается сниженным задолго до того, как ребенок с этими проблемами столкнется.
Заболевания в период беременности
Различные заболевания, возникающие во время беременности, могут пагубно отразиться на развитии ребенка. Достаточно упомянуть такие болезни, как диабет, сифилис или краснуха. Известно, например, что у матери краснуха протекает легко, но при заражении ее в первые месяцы беременности, она приводит к необратимым дефектам зрения, слуха и, особенно, интеллектуальных функций ребенка.
Потребление матерью лекарственных и других веществ
Многие вещества могут серьезно нарушать развитие утробного плода. Установлено, что злоупотребление в первые месяцы беременности некоторыми антибиотиками, транквилизаторами типа элениума или даже аспирином, может приводить к значительной задержке умственного развития новорожденного. Так же последствия возможны и в том случае, если мать во время беременности употребляет алкоголь или курит.
Факторы окружающей среды
С каким бы потенциалом не родился ребенок, очевидно, что необходимые ему для выживания формы интеллектуального поведения смогут развиваться и совершенствоваться лишь при контакте с той средой, с которой он будет взаимодействовать всю жизнь. Если в самом начале жизни интеллектуальные функции, по-видимому, определяются только наследственными факторами, то очень скоро ситуация становиться иной. Уже начиная с года или двух, ребенок приобретает способность более или менее эффективно взаимодействовать со своим физическим и социальным, окружением. При этом все более и более сложные обстоятельства и ситуации, в которые он попадает, могут оказаться решающими для хода его дальнейшей жизни.
Питание
Серьезная недостаточность ребенка, по-видимому, особенно сильно сказывается в первые шесть месяцев жизни, Однако, если в дальнейшем ребенок начинает питаться нормально и жить в стабильных условиях с достаточной психической стимуляцией, то он уже к 4-5 годам может догнать в своем развитии сверстников, получавших нормальное питание с момента рождения.
Социальное положение и школьная успеваемость
До начала нашего века в большинстве западных стран на ребенка смотрели как на "взрослого в миниатюре", который более или менее быстро в зависимости от социального происхождения приобщается к миру взрослых. Мышление и интеллектуальные проявления формировались в определенных рамках, характерных для той среды, в которой предстояло жить будущему взрослому человеку. У представителей привилегированных слоев интеллект развивается в более "абстрактном" направлении в соответствии с их уровнем культуры, В народных же массах интеллект должен был носить "практический" характер и отражать профессиональные навыки.
При демократизации начального, а затем среднего образования, была поставлена задача - дать каждому человеку возможность максимально развить свои способности с тем, что бы он мог полностью реализовать имеющиеся у него возможности. В то же время, школа взяла за основу старую модель обучения, и в ней сохранились ценности и представления о культуре и интеллекте, свойственные привилегированным слоям. Это было сделано в надежде на то, что представления, характерные для низких классов, смогут измениться в пользу "элитарной" культуры. При этом не была учтена социальная действительность, которая не может меняться столь быстро. В низших слоях, в неблагополучных семьях жизненная реальность рассматривается как ежедневная борьба за существование, а не как возможность этического и интеллектуального развития. Поэтому такие группы населения остаются невосприимчивыми к культуре, никак не связанной с их повседневными нуждами. Ребенок, вышедший из низших слоев, оказывается в "подвешенном" состоянии между школьным воспитанием, которое не находит отклика в его семье, с одной стороны и повседневной жизнью, свойственной его среде и заставляющей его как можно быстрее приобщиться к миру труда с целью обретения самостоятельности, с другой.
1.3.3 Развитие интеллекта и специальных познавательных способностей в течение жизни
Интеллект подвержен изменению: в течение жизни способность к решению задач изменяется неравномерно. Большинство исследователей сходится на том, что в первые 20 лет жизни происходит основное интеллектуальное развитие человека, причем наиболее интенсивно интеллект изменяется от 2 до 12 лет.
К этому выводу независимо друг от друга пришли Я.А.Пономарев, Л. Терстоун, Ж. Пиаже, Н. Рейли и многие другие исследователи[9;160]. Интеллект человека достигает своего максимального развития к 19-20 годам, затем наступает фаза стабилизации и с 30 — 34 лет происходит спад продуктивности интеллектуальных функций.
Развитие общих интеллектуальных способностей зависит не только от возраста, но и от вида деятельности (учебной и профессиональной), которой занимается человек.
Рис.1.7. Интеллектуальное развитие ребенка и подростка (по Ж. Годфруа. Что такое прогресс. М.: Прогресс, 1993)
0,25 |
0,5 |
0,75 |
1 |
1 |
0 |
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
16 |
Возраст |
Уровень, соответствующий взрослым |
3 |
2 |
|
В последнее время данные о снижении интеллекта у лиц пожилого возраста подвергаются критике[9;158]. Сохраняются, в первую очередь, индивидуальные различия интеллекта. Сторонники концепции об индивидуальной стабильности IQ в течение жизни приводят целый ряд аргументов. Так, по результатам тестирования учеников средней школы и колледжей, успешность выполнения интеллектуальных тестов остается практически неизменной в течение обучения. В частности, Т. Хансен провел исследование интеллекта 613 мальчиков-третьеклассников и сравнил результаты с их же показателями через 10 лет перед поступлением на службу в армию. Корреляция оказалась равной 0,73. В ряде других исследований получены еще более высокие корреляции между уровнем интеллекта, измеренного в раннем детстве, и более поздними результатами (0,46 < r < 0,83). Разумеется, с течением времени корреляция результатов раннего тестирования уменьшалась, но все равно была высокой: через 10 лет она оставалась на уровне 0,65, а через 25 лет — на уровне 0,60. Дж. Андерсон выдвинул гипотезу «перекрытия» для объяснения связи между результатами тестирования интеллекта в разном возрасте[9;161]. В течение жизни индивид не утрачивает приобретенные знания и интеллектуальные навыки, потому константа IQ отражает отношение часть—целое между существовавшим потенциалом и вновь приобретенным. Однако критики концепции стабильности IQ считают, что можно говорить лишь о постоянстве уровня интеллекта в среднем по выборке, в то время как индивидуальные показатели могут у одних людей ухудшаться, а у других — улучшаться в течение жизни.
Исследования калифорнийских психологов показали, что индивидуальные показатели интеллекта с 6 до 18 лет могут изменяться в пределах 30 единиц (при s = 15). Эти изменения были связаны не со спонтанными колебаниями, а с различиями в семейном окружении: у детей, оказавшихся в благоприятной эмоциональной среде, уровень интеллекта постоянно повышался, а у детей, по отношению к которым родители не проявляли достаточной заботы, наблюдался процесс снижения уровня интеллекта[6;140]. По данным американских исследователей, решающим фактором, влияющим на относительный прогресс или регресс в развитии интеллекта, оказался уровень образования родителей. Что касается эмоциональных отношений, то эмоциональная подчиненность родителям влияла на спад IQ в возрасте от 4,5 до 6 лет. Подъем же IQ связан с эмоциональным одобрением со стороны родителей, поощрением инициативы и рассудительности, а также формированием родителями у ребенка еще не нужных для адаптации в данном возрасте умений и навыков.
Развитие интеллекта в школьном возрасте определяется преимущественно внутренней мотивацией ребенка — стремлением к высоким достижениям, тягой к соперничеству и любознательностью[14;39].
Более серьезные проблемы возникают при исследовании интеллекта взрослых. Как уже отмечалось выше, большая часть исследований изменения интеллекта взрослых отмечает подъем показателей, от 17 до 20-30 лет, а затем — резкое снижение. Особо резкое падение уровня интеллекта наблюдается после 60 лет (данные получены по тесту Векслера WAIS). Однако эти данные подвергаются обоснованной критике. Во-первых, эти результаты получены методом срезов, то есть исследование проводилось одномоментно на группах людей разных возрастов. Но различия групповых данных могут быть обусловлены не возрастными особенностями, а тем, что люди, вошедшие в разные возрастные группы, принадлежат к различным поколениям и обладают разным уровнем образования и культуры[14;39]. Уровень образования населения с течением времени повышается, и это неизбежно отражается в повышении результативности выполнения теста WAIS молодым поколением. Старшие по возрасту люди хуже выполняют тесты, потому что они менее образованны. Вторым аргументом являются результаты, полученные в лонгитюдных исследованиях, противоречащие результатам, полученным методом срезов[9;165]. Во всех лонгитюдных исследованиях, которые основаны на повторном тестировании одних и тех же людей, имеющих высокий интеллектуальный и/или образовательный уровень, замечены тенденции к увеличению уровня интеллекта от 5 до 40 лет. Сходные результаты получены при обследовании лиц со средним уровнем интеллекта и образования, а также при изучении умственно отсталых испытуемых. Наиболее тщательное исследование по этому вопросу провели К. В. Шай и С. Р. Стротер в 1968 году[6;142]. Они обследовали с помощью теста элементарных умственных способностей 500 человек, отобранных из популяции 18 000 человек случайным образом. В возрастные группы входили по 25 мужчин и 25 женщин в возрасте от 20 до 70 лет с интервалом 5 лет. Через 7 лет 302 человека из исходной выборки были вновь протестированы. Сравнение данных, полученных методом срезов и лонгитюдным методом, показало, что все лица, ранее принадлежащие молодому поколению, лучше выполняют тест. Кроме того, лонгитюд показал, что по определенным тестам результативность практически не изменяется с возрастом, и лишь по некоторым наблюдается небольшое, но значимое снижение. Пространственный интеллект остается неизменным примерно до 60 лет, после чего наблюдается снижение продуктивности. Тест на логическое мышление лучше всего выполняют люди в возрасте от 35 до 45 лет, а после 45 начинается снижение средних показателей. Вербальный интеллект улучшается до 55-60 лет, снижение наступает к 65-70 годам. Наконец, арифметический тест практически одинаково успешно выполняют испытуемые от 25 до 60 лет (с некоторым улучшением), после 60 лет наступает ухудшение[15;56].
Анализируя данные многочисленных исследований, ведущий американский специалист в области тестирования интеллекта А. Анастази приходит к выводу, что снижение интеллекта, связанное с возрастом, проявляется только после 60 лет, а до этого периода различия средних данных по разным возрастным группам объясняются различиями поколений по уровню образования и культуры[9;170]. Результаты эмпирических исследований говорят о жесткой связи интеллектуальной продуктивности людей в 60-80 лет с их профессией: некоторые интеллектуальные функции с годами могут развиваться даже в преклонном возрасте. Однако с возрастом все же происходит снижение продуктивности основного показателя интеллекта, а именно «общего интеллекта», за счет замедления мыслительного процесса, связанного со снижением скорости обработки информации. Причем скоростные показатели интеллекта по многочисленным данным снижаются уже с 30 лет. Считается, что из парциальных способностей больше всего страдают мнемические процессы, связанные с активным восприятием и долгосрочным хранением информации, а способность к краткосрочному удержанию информации снижается с возрастом весьма незначительно[6;145]. Снижается скорость кодирования и актуализации информации в кратковременной памяти.
SHAPE * MERGEFORMAT
Cr |
F |
младенчество |
детство |
юность |
средний возраст |
старший возраст |
Cr - кристаллизованный интеллект |
F - флюидный интеллект |
Продуктивность |
Рис.1.8.Развитие кристаллизованного и флюидного интеллекта в течение жизни (по J. R. Neselroade, R. В. Cattel! Handbook of Multivariate Experimental Psycology. N. Y.: Plenum Press, 1988)[6;143]
Главной особенностью изменения интеллекта при старении является дифференциация психических функций[9]. В молодости основные парциальные способности (пространственные, вербальные, арифметические и пр.) могут изменяться относительно независимо друг от друга. В пожилом возрасте проявляется дифференцировка функций на «кристаллизованные» и «текучие» (по Кэттеллу). По Кэттеллу, «кристаллизованные» функции зависят от тренировки, образования, приобщенности к культуре (логическое мышление, способность к счету, знания и пр.). Под «текучими» способностями Кэттелл понимал способности, позволяющие осуществлять гибкое и быстрое восприятие и обработку информации (скорость обработки информации) [6;143]. Эти способности обусловлены генетически. Кэттелловский «текучий интеллект» тождественен фактору «общей умственной энергии» по Спирмену.
Данные исследований возрастных изменений познавательных функций свидетельствуют о том, что «кристаллизованные» функции мало зависят от процесса старения, их структура не изменяется, они могут тренироваться (способность заучивать стихи) [14;57]. Что касается скоростных способностей («текучий интеллект»), то, как правило, они снижаются при старении, особенно после 60 лет.
Можно сделать вывод, что общий интеллект в течение жизни претерпевает определенные изменения: развиваясь особенно интенсивно от 0 до 12 лет, достигая оптимума развития к 20-30 годам, его уровень несколько снижается и затем падает после 60 лет. «Кристаллизованный интеллект» либо снижается незначительно, либо остается неизменным и может даже развиваться.
1.4 Взаимосвязь интеллекта с успеваемостью и профессиональной деятельностью
1.4.1 Общий интеллект и успеваемость
Пока еще никому не удалось выделить обучаемость как специфическую общую способность, отличную от общего интеллекта. Поэтому интеллект рассматривается как способность, лежащая в основе обучаемости, но не являющаяся существенным фактором, обусловливающим успешность обучения[9;205]. Корреляция тестов общего интеллекта с критериями обучаемости колеблется от -0,03 до 0,61.
Для теста «Прогрессивные матрицы» Равена корреляция общего интеллекта с уровнем школьной успеваемости равна 0,70 (английские школьники). Данные, полученные в других странах по тесту Равена, менее значимы: корреляции колеблются от 0,33 до 0,61 (успеваемость по математике; немецкие школьники) и 0,72 (общая успеваемость; советские школьники).
Тест Векслера дает менее высокие корреляции с успеваемостью: вербальная шкала — до 0,65, невербальная — от 0,35 до 0,45, общий интеллект — 0,50.
Чаще всего для прогноза школьной успеваемости используют тесты структуры интеллекта или их отдельные субтесты[9;205].
Положительные, но умеренные по величине корреляции между учебными оценками и результатами тестирования не позволяли исследователям однозначно утверждать, что интеллект детерминирует успешность обучения[9;205]. Недостаточно высокие корреляции объяснялись нерелевантностью оценок в качестве критериев успешности обучения, несоответствием материала тестов содержанию учебных программ и т. д. [6;151].
Анализ распределения индивидов в пространстве координат «школьные оценки» — «величина IQ» свидетельствует о наличии более сложной зависимости между интеллектом и успеваемостью, чем линейная связь.
Нетрудно заметить, что существует положительная корреляция IQ и школьной успеваемости, но для школьников с высоким уровнем интеллекта она минимальна.
Л. Ф. Бурлачук и В. М. Блейхер исследовали зависимость школьной успеваемости от уровня интеллекта (тест Векслера). В ряды слабоуспевающих школьников попали ученики и с высоким, и с низким уровнем интеллекта. Однако лица с интеллектом ниже среднего никогда не входили в число хорошо или отлично успевающих. Главной причиной низкой успеваемости детей с высоким IQ было отсутствие учебной мотивации.
SHAPE * MERGEFORMAT
Величина IQ |
Высокие |
Средние |
Низкие |
Школьные оценки |
Низкий |
Средний |
Высокий |
Рис.1.9. Соотношение между IQ и школьными оценками.[6]
Таким образом, существует нижний «порог» IQ для учебной деятельности: успешно учиться может только школьник, чей интеллект выше некоторого уровня, определяемого внешними требованиями деятельности. И вместе с тем успеваемость не растет бесконечно: ее уровень ограничивают системы оценок и требования педагогов к учащимся .
1.4.2 Общий интеллект и профессиональная деятельность
Тесты интеллекта, особенно так называемые тесты структуры интеллекта (тест Амтхауэра, GATB, ДАТ и т. д.), широко используют в целях профессионального отбора и распределения кадров[9;207].
Данные тестирования общего интеллекта коррелируют с успешностью деятельности: для разных профессий -0,10 < г < 0,85. Для большинства профессий корреляция равна 0,60 (тест GATB).
Накопленные к 60-м годам результаты, характеризующие связь показателей тестирования интеллекта при профессиональном отборе с характеристиками успешности профессионального обучения и профессиональной деятельности, позволили сделать весьма нетривиальный вывод. Одним из первых теорию «порога интеллекта» для профессиональной деятельности предложил Д. Н. Перкинс[9;207]. Согласно его концепции, для каждой профессии существует нижний пороговый уровень развития интеллекта. Люди с IQ ниже определенного уровня не способны овладеть данной профессией. Если же IQ превышает этот уровень, то между уровнем достижений в профессиональной деятельности и уровнем интеллекта нельзя проследить никакой существенной корреляционной связи[6;154]. Успешность профессиональной деятельности начинает определять мотивация, личностные черты индивида, система ценностей и т. д.
Индивид не в силах овладеть деятельностью, если его интеллект ниже этого порога. Если же его интеллект превышает пороговое значение, то реальные достижения индивида определяют не когнитивные способности, а его настойчивость, увлеченность, темпераментальные особенности, поддержка семьи и т.д.
Существует ли «верхний» интеллектуальный порог? Иными словами: ограничены ли возможности индивида в определенной профессиональной деятельности уровнем его интеллекта?
Следует отметить, что прогностичность тестов интеллекта выше для успешности профессионального обучения, нежели для продуктивности профессиональной деятельности. Очевидно, практическая деятельность менее контролируема, чем учебная, а ее результат зачастую менее жестко оценивается, не определен или очень отдален во времени.
1.4.3 Зависимость учебной успеваемости от уровня развития отдельных интеллектуальных способностей
В педагогической психологии накоплен колоссальный эмпирический материал, касающийся связей уровня развития интеллекта с успеваемостью[6;155]. Следует отметить, что вербальный интеллект сильнее связан с уровнем учебной успеваемости, чем невербальный (по Векслеру).
При осуществлении индивидуального подхода к обучению важно знать, как развитие отдельных составляющих структуры интеллекта определяет успешность овладения школьниками теми или иными учебными предметами. В зависимости от возраста ребенка характер этих связей меняется. Cосредоточим свой анализ на результатах исследований детей среднего и старшего школьного возраста.
Анализ доступных литературных данных по проблеме взаимосвязи уровня развития познавательных способностей и успешности обучения в школе по различным учебным предметам показал, что для определения профиля обучения и определения уровня, на котором будет проводиться обучение, достаточно диагностики трех типов интеллекта: вербального, математического и пространственного[9;208]. Обобщенные результаты приведены в следующей таблице, показывающей корреляции между успешностью обучения по различным школьным предметам и познавательными способностями.
Табл. 2. Успешность обучения по школьным предметам и
уровень интеллекта.[9]
Школьные предметы |
Интеллект |
|||
Невербальный математический |
Невербальный пространственный |
Вербальный |
Общий |
|
Русский язык |
+ |
++ |
||
Литература |
++ |
++ |
||
История |
+ |
|||
Иностранный язык |
+ |
|||
География |
+ |
+ |
||
Физика |
++ |
+ |
||
Алгебра |
++ |
++ |
++ |
++ |
Геометрия |
++ |
++ |
++ |
++ |
Химия |
++ |
+ |
+ |
|
Зоология |
+ |
+ |
||
Черчение |
+4- |
++ |
++ |
+ _ умеренная, ++ — высшая положительная корреляция
Результаты в обобщенном виде можно описать следующим образом:
1) уровень вербального интеллекта определяет успешность обучения по всем предметам и, в первую очередь гуманитарным связи обнаружатся (литература, история и т. д.);
2) уровень пространственного интеллекта определяет успешность обучения по предметам естественно-гуманитарного цикла (биология, география и пр.) и физико-математического цикла;
3) уровень формального (числового) интеллекта определяет успешность обучения по математике.
Таким образом, чтобы успешно учиться по математике, физике и химии, нужно обладать развитым «числовым» (формально-символическим), пространственным и вербальным интеллектами.
Для успешного обучения по предметам естественнонаучного чикла необходим высокий уровень развития пространственного интеллекта и вербального интеллекта; чтобы хорошо успевать по гуманитарным дисциплинам, нужен высокий уровень развития вербального интеллекта.
Эту зависимость можно назвать ступенчатой и выразить следующей схемой:
SHAPE * MERGEFORMAT
Формальный |
Пространственный |
Вербальный |
Физико-математический |
Естественнонаучный |
Гуманитарный |
Рисунок SEQ Рисунок * ARABIC 1.10 Связь успешного обучения по предметам с уровнями развития компонентов интеллекта[9].
Следует лишь добавить, что корреляционные связи между успешностью обучения и уровнем развития каждого из факторов описываются той же моделью «интеллектуального диапазона»[9;209].
Переход от факторных и корреляционных моделей описания структуры общих способностей и параметров деятельности к моделям алгебраическим и далее — динамическим сегодня является совершенно необходимым для дальнейшего развития теории общих способностей.
Модель «интеллектуального диапазона» (точнее было бы сказать: «диапазона продуктивности») позволяет описать ряд известных эмпирических зависимостей и фактов, а также предсказать новые эффекты[6;158]. Общий интеллект определяет лишь верхние границы возможных достижений человека. Известная поговорка: «Выше головы не прыгнешь» — звучит не очень оптимистично. Но это не значит, что диапазон человеческих возможностей мал.
Глава 2 Исследование особенностей интеллекта учеников дифференцированных классов
2.1 Организация и методы
Цель работы
Выявить и изучить особенности интеллектуальной деятельности у учеников математического и гуманитарного классов.
Задачи
1. Провести диагностику вербального и счетно-математического компонентов интеллекта школьников.
2. Сопоставить результаты учеников математического и гуманитарного классов.
3. Выявить различия, если они есть, в структуре интеллекта учеников дифференцированных классов.
4. Сделать выводы: соответствует ли разделение учеников по дифференцированным классам особенностям структуры их интеллекта (уровню развития вербального и счетно-математического компонентов интеллекта школьников)
Рабочая гипотеза
При разделение детей по математическому и гуманитарному направлениям особенности структуры их интеллекта учитываются не в полной мере.
Методика
В процессе исследования был использован тест структуры интеллекта Амтхауэра.
Впервые тест структуры интеллекта был описан в 1953 г. Р. Амтхауэром. Групповой тест предназначался для оценки структуры интеллекта лиц в возрасте от 13 лет до 61 года. Автор ставил задачу разработать метод, который мог использоваться на практике для профессиональной ориентации и консультирования по проблемам выбора профессии[1;56]. Амтхауэр включил в свой тест задания на диагностику следующих компонентов интеллекта: вербального, счетно-математического, пространственного, мнемического.
Средняя величина взаимных корреляций между этими факторами в тесте равна 0,36 (0,62 — 0,20). Тест был разработан в трех параллельных формах. Надежность теста как инструмента равна 0,97 (корреляция четных и нечетных заданий), при повторном тестировании через год коэффициенты надежности оказались равными 0,83 (по отдельным субтестам — 0,50). Валидность теста по критерию успешности обучения в школе равна 0,62.
Тест был адаптирован для выборки русских школьников М. К. Акимовой и др. (1984) и включал 9 субтестов[1;56]. Методика включает в себя следующие субтесты: 1) на общую осведомленность и информированность в разных областях знаний (не только научных, но и житейских); 2) на классификацию понятий; 3) на установление аналогий; 4) на подведение двух понятий под общую категорию (обобщение); 5) на умение решать простые арифметические задачи; 6) на умение находить числовые закономерности; 7) на умение мысленно оперировать изображениями фигур на плоскости; 8) на умение мысленно оперировать изображениями объемных фигур. Каждый субтест состоит из 20 заданий. Время выполнения каждого субтеста ограничено — 10 мин. Целиком выполнение всего теста занимает 80 мин (два урока без перерыва).
Для проведения группового тестирования подготовлены две формы теста — А и Б. Соседи по парте работают с разными формами теста.
Таким образом, задания теста состоят из вербального и числового материалов, а также из изображений. Первые требуют от испытуемых определенных знаний и умений производить с материалом некоторые логические действия. Вторые предполагают определенную степень развития формализованного и пространственного мышления. Р. Амтхауэр предполагал, что по успешности выполнения отдельных субтестов этой методики можно судить о структуре интеллекта испытуемых[1;57]. Для грубого анализа «умственного профиля» он предлагает следующее: если наивысшие результаты получены испытуемым по первым четырем субтестам, то у него больше развиты теоретические способности, если же они получены по субтестам, составляющим вторую половину методики, то у него больше развиты практические способности.
Для диагностики вербального и счетно-математического компонентов интеллекта школьников были выбраны 2 субтеста:
1) на классификацию понятий;
2) на умение находить числовые закономерности.
Ход работы
Исследование проводилось 15.03.04 в 9а классе и 18.03.04 в 9б классе химико-технологического лицея № 4 города Пскова. Оба класса специализированные, 9а - математический, 9б - гуманитарный. Исследование проводилось в 10.30, когда школьники уже проснулись и еще не устали.
Каждому ученику был выдан бланк методики. Далее была зачитана инструкция и засечено время 15 минут. После чего испытуемые начали работать.
Инструкция
Перед вами два теста, первый словесный, второй математический. Вам нужно выполнить оба, на каждый дается по 15 минут.
Посмотрите словесный тест (раздел 2). В каждом задании представлено пять слов. Все слова кроме одного можно объединить общим понятием. Из них вам нужно исключить лишнее.
Например:
а) видеть б) говорить в) осязать г) нюхать д) слышать
Лишнее слово «говорить», остальные можно объединить понятием «чувствовать». В ответе запишем номер задания и букву б).
В математическом тесте (раздел 6) вам дается ряд чисел, который вам нужно продолжить одним числом.
Например:
2 4 6 8 10 12 14 ?
Здесь каждое следующее число получается путем прибавления двойки к предыдущему. Это будет число 16. В ответе запишем номер задания и полученное число 16.
2.2 Анализ результатов и интерпритация См. табл. 2.
Наибольшее количество баллов:
Математический тест 9а: 20 баллов;
9б: 19 баллов;
Вербальный тест 9а: 16 баллов;
9б: 16 баллов;
Наименьшее количество баллов:
Математический тест 9а: 12 баллов;
9б: 4 баллов;
Вербальный тест 9а: 7 баллов;
9б: 7 баллов;
Средний балл:
Математический тест 9а: 17,9 баллов;
9б: 10,7 баллов;
Вербальный тест 9а: 13,1 баллов;
9б: 11,6 баллов;
Средний уровень школьной успеваемости:
9а: 4,26;
9б: 3,94.
В целом получилось, что наибольшая разница результатов математического и вербального тестов в 9а составила 9 баллов, в 9б составила 10 баллов. Наименьшая разница в 9а составила 1 балл, в 9б составила 2 балла.
9а класс:
1) П.И. Результат математического теста: 17 баллов, вербального: 13 баллов, средняя успеваемость: 3,3 балла, разница результатов: 4 балла.
2) Е.Р. Результат математического теста: 13 баллов, вербального: 9 баллов, средняя успеваемость: 3,6 балла, разница результатов: 4 балла.
3) Б.Д. Результат математического теста: 12 баллов, вербального: 7 баллов, средняя успеваемость: 3,6 балла, разница результатов: 5 баллов.
4) И.А. Результат математического теста: 18 баллов, вербального: 16 баллов, средняя успеваемость: 3,8 балла, разница результатов: 2 балла.
5) З.О. Результат математического теста: 19 баллов, вербального: 15 баллов, средняя успеваемость: 3,8 балла, разница результатов: 4 балла.
6) П.И. Результат математического теста: 17 баллов, вербального: 16 баллов, средняя успеваемость: 4 балла, разница результатов: 1 балл.
7) Ф.Г. Результат математического теста: 19 баллов, вербального: 16 баллов, средняя успеваемость: 4 балла, разница результатов: 3 балла.
8) Ш.Е. Результат математического теста: 20 баллов, вербального: 12 баллов, средняя успеваемость: 4,2 балла, разница результатов: 8 баллов.
9) М.Д.Результат математического теста: 19 баллов, вербального: 15 баллов, средняя успеваемость: 4,3 балла, разница результатов: 4 балла.
10) К.О. Результат математического теста: 18аллов, вербального: 15баллов, средняя успеваемость: 4,4балла, разница результатов: 3 балла.
11) И.О. Результат математического теста: 20 баллов, вербального: 14 баллов, средняя успеваемость: 4,4 балла, разница результатов: 6 баллов.
12) Е.И. Результат математического теста: 20 баллов, вербального: 14 баллов, средняя успеваемость: 4,5 балла, разница результатов: 6 баллов.
13) А.М. Результат математического теста: 20 баллов, вербального: 13 баллов, средняя успеваемость: 4,6 балла, разница результатов: 7 баллов.
14) Г.М. Результат математического теста: 19 баллов, вербального: 13 баллов, средняя успеваемость: 4,7 балла, разница результатов: 6 баллов.
15) Е.Т. Результат математического теста: 19 баллов, вербального: 12 баллов, средняя успеваемость: 4,8 балла, разница результатов: 7 баллов.
16) С.М. Результат математического теста: 20 баллов, вербального: 11 баллов, средняя успеваемость: 4,8 балла, разница результатов: 9 баллов.
17) К.А. Результат математического теста: 13 баллов, вербального: 10 баллов, средняя успеваемость: 4,9 балла, разница результатов: 3 баллов.
18) С.О. Результат математического теста: 20 баллов, вербального: 15 баллов, средняя успеваемость: 5 балла, разница результатов: 5 баллов.
9б класс:
1) Ф.Р. Результат математического теста: 10 баллов, вербального: 13 баллов, средняя успеваемость: 3,2 балла, разница результатов: 3 балла.
2) М.С. Результат математического теста: 12 баллов, вербального: 14 баллов, средняя успеваемость: 3,2 балла, разница результатов: 2 балла.
3) Ш.О. Результат математического теста: 17 баллов, вербального: 7 баллов, средняя успеваемость: 3,3 балла, разница результатов: 10 баллов.
4) О.М. Результат математического теста: 8 баллов, вербального: 14 баллов, средняя успеваемость: 3,3 балла, разница результатов: 6 баллов.
5) Ф.А. Результат математического теста: 12 баллов, вербального: 15 баллов, средняя успеваемость: 3,4 балла, разница результатов: 3 балла.
6) В.Д. Результат математического теста: 12 баллов, вербального: 16 баллов, средняя успеваемость: 3,5 балла, разница результатов: 4 балла.
7) З.В. Результат математического теста: 13 баллов, вербального: 11 баллов, средняя успеваемость: 3,6 балла, разница результатов: 2 балла.
8) С.С. Результат математического теста: 7 баллов, вербального: 15 баллов, средняя успеваемость: 3,8 балла, разница результатов: 8 баллов.
9) З.Р. Результат математического теста: 19 баллов, вербального: 12 баллов, средняя успеваемость: 3,8 балла, разница результатов: 5 баллов.
10) Т.И. Результат математического теста: 19 баллов, вербального: 13 баллов, средняя успеваемость: 3,9 балла, разница результатов: 6 баллов.
11) И.А. Результат математического теста: 5 баллов, вербального: 7 баллов, средняя успеваемость: 4 балла, разница результатов: 2 балла.
12) П.А. Результат математического теста: 9 баллов, вербального: 12 баллов, средняя успеваемость: 4 балла, разница результатов: 3 балла.
13) М.М. Результат математического теста: 12 баллов, вербального: 7 баллов, средняя успеваемость: 4,3 балла, разница результатов: 5 балла.
14) О.О. Результат математического теста: 6 баллов, вербального: 8 баллов, средняя успеваемость: 4,5 балла, разница результатов: 2 балла.
15) К.Е. Результат математического теста: 7 баллов, вербального: 12 баллов, средняя успеваемость: 4,7 балла, разница результатов: 5 баллов.
16) Д.Е. Результат математического теста: 7 баллов, вербального: 13 баллов, средняя успеваемость: 4,7 балла, разница результатов: 6 баллов.
17) С.В. Результат математического теста: 4 баллов, вербального: 11 баллов, средняя успеваемость: 4,8 балла, разница результатов: 7 баллов.
18) М.Е. Результат математического теста: 14 баллов, вербального: 18 баллов, средняя успеваемость: 5 балла, разница результатов: 4 балла.
Рис. 2.1.а.
Рис. 2.1.б.
Рис.2.2.а |
Рис.2.2.б. |
Корреляции результатов
Между результатами математического и вербального тестов в 9а: 0,67.
Между результатами вербального 9а и вербального 9б: 0,56.
Это свидетельствует о явной связи.
Между успеваемостью и результатами математического теста в 9а: 0,42
Между успеваемостью и результатами вербального теста в 9а: 0,07
Между успеваемостью и результатами вербального теста в 9б: -0,41
Между успеваемостью и результатами математическоготеста в 9б: -0,35
Зависимость успеваемости и результатов незначительна.
Т-критерий стьюдента:
Различия математического теста 9а и математического теста 9б: 6,03;
Вербального теста 9а и математического теста 9а: -9,67.
Различия между другими результатами незначительны. См. приложение.
Из графиков на рис.2.1.б. видно, что результаты вербального теста классов отличаются не значительно, в среднем баллы гуманитарного класса ниже на 11%. Что свидетельствует о незначительном различии уровней развития вербального компонента интеллекта школьников.
На рис.2.1.а. представлены графики по результатам математического теста. Легко заметить, что у 9а класса количество верных ответов в среднем значительно выше, чем у 9б. разница в среднем составляет 40%. Что свидетельствуют о более высоком уровня развития счетно-математического компонента интеллекта школьников математического класса.
Графики на рис.2.2.а и 2.2.б дают полную картину ответов учеников 9а и 9б классов по каждому тесту.
Из рис.2.2.а. Ясно видно, что график вербального теста находится ниже графика математического теста и его значения меньше у каждого испытуемого. Можно сказать, что у всех учеников математического класса больше развит счетно-математический компонент интеллекта.
Рис.2.2.б показывает, что график вербального теста пересекается с графиком математического теста и его значения ниже в пяти точках из восемнадцати. Можно сделать вывод, что у тринадцати учеников 9б (большей части) больше развит вербальный компонент интеллекта, а у пяти счетно-математический. Разница результатов по разным тестам у этих учеников составляет от двух до десяти баллов, что позволяет считать их неслучайными.
Выводы
Гипотеза о том, что разделение детей по специализированным классам не соответствует особенностям структуры их интеллекта подтвердилась в случае с гуманитарным классом, где у 27% учащихся больше развит счетно-математический компонент интеллекта, а не вербальный.
В случае с математическим классом гипотеза не подтвердилась. У всех учеников уровень развития счетно-математического компонента интеллекта выше чем вербального.
Выявлены следующие особенности:
1) Внутри каждого класса присутствует значительная разница между результатами учеников (наибольшим и наименьшим);
2) Результаты обоих тестов в математическом классе превышают результаты гуманитарного класса.
3) Успеваемость математического класса в среднем выше чем гуманитарного.
4) Нет явной зависимости между успеваемостью и результатами исследования.
Заключение
Интеллект человека представляет собой чрезвычайно многофакторную величину. Он определяет как социальную полезность человека, так и его индивидуальные особенности, служит главным проявлением разума. По сути, интеллект то, что выделяет нас из мира животных, что придает особую значимость человеку, что позволяет ему динамически изменять окружающий мир, перестраивая среду под себя, а не приспосабливаться к условиям быстро меняющейся действительности. Проверка интеллекта является важнейшей задачей, которая на любом этапе позволит спланировать дальнейшее развитие личности, определить ход интеллектуальной, моральной и психологической эволюции человека. Именно уровень и тип развития интеллекта определяет будущее человека, его судьбу. Он определяет успешность адаптации к разным сферам деятельности, видам занятий, которыми потенциально может овладеть человек: чем выше интеллект, тем шире диапазон деятельности. Вероятно, «общечеловеческие» и специальные способности (общий и вербальный интеллект) детерминированы, в основном, генетическими, а индивидуальные – средовыми влияниями. Неудивительно, что различия в уровне развития специальных способностей, связанных с определенным материалом функционированием систем, обеспечивающих контакт с внешним миром, определяется по преимуществу средой.
Положительные, но умеренные по величине корреляции между учебными оценками и результатами тестирования не позволяют однозначно утверждать, что интеллект детерминирует успешность обучения.
Современная школа имеет тенденцию к дифференциации учеников по их индивидуальным способностям. При осуществлении индивидуального подхода к обучению важно знать, что для успешного обучения в математическом классе у детей должен быть высоко развит формальный, пространственный и вербальный интеллект. А для успешного обучения в гуманитарном классе необходим главным образом высокий уровень вербального интеллекта. Этот факт, на мой взгляд, свидетельствует о большей мобильности возможностей детей, имеющих техническую направленность способностей. Это объясняет тот факт, что такие школьники могут с одинаковой успешностью учиться и в математическом классе, и в гуманитарном.
Цель данной работы достигнута. Были выявлены особенности интеллектуальной деятельности учеников математического и гуманитарного классов:
Уровень развития счетно-математического компонента интеллекта учеников математического класса значительно выше чем у учеников гуманитарного класса, в то время как уровень развития вербального компонента примерно одинаков в обоих классах;
В специализированных классах не все ученики имеют умственные способности, соответствующие требованиям программы.
Исследование показывает, что метод дифференциации в школе работает не настолько эффективно, как должен. В специализированных классах присутствуют дети, не справляющиеся с программой повышенной сложности. В связи с этим можно порекомендовать школьным психологам проводить диагностику структуры интеллекта детей перед вступительными испытаниями и затем в процессе обучения хотя бы раз в год, чтобы дети имели возможность выбрать направление соответствующее их способностям. В этом случае эффективность метода дифференциации заметно вырастет.
Источники
1. Болотова А.К. Прикладная психология: Учебник для ВУЗов. М. 2002.
2. Бурлачук Л.Ф., Блейзер В.М. Психологическая диагностика интеллекта и личности. Киев 1978.
3. Годфруа Ж. Что такое психология. М. 1996. Т.2.
4. Голубева Э.А. Способности и склонности. М. 1989.
5. Голубева Э.А. Способности и индивидуальность. М. 1993
6. Дружинин В.Н. Психология общих способностей. М. 1995.
7. Завалишина Д.Н. Психологическая структура способностей // Развитие и диагностика способностей. М.1991.
8. Кочубей Б.И. Анализ количественных признаков // Роль среды в формировании индивидуальности человека. М. 1988.
9. Панферов В.Н. Психология человека. СПб. 2002.
10. Смирнова Н.Л. Исследование имплицитных концепций интеллекта // Психология личности в условиях социальных изменений. М 1993.
11. Холодная М.А. Психология интеллекта: парадоксы исследования. Томск. 2002.
12. Практический интеллект под ред. Дж. Стернберга. СПб. 2002.
13. Думирашку Т.А. Влияние внутрисемейных факторов на формирование индивидуальности // Вопросы психологии 1991 №1.
14. Егорова М.С. , Зырянова Н.М, Пьянкова Возрастные изменения отношений в показателях интеллекта // Вопросы психологии 1993 №2.
15. Освальд В. Ослабление когнитивных функций в пожилом возрасте при дементных процессах //Иностранная психология. 1993. №2.
16. Тадж Д. Влияние коммуникации между сверстниками на их развитие // Вопросы психологии. 1991 №2.
17. http://pozitiv.is-best.biz/content/files/psiholg/563.php
18. www.appa.ru
20. www.avenir.ru
21. www.voppsy.ru/
22. www.superidea.ru
24. www.atheism.ru/science/science.phtml
Приложение 1
Табл. 3. Сводная таблица данных учеников 9 А и 9Б классов.
9 А |
|
||||||||||
№ |
Фамилия |
Ср.балл |
Мат. Тест |
Верб. Тест |
Разница(М.-В.) |
|
|||||
1 |
П.И. |
3,3 |
17 |
13 |
4 |
|
|||||
2 |
Е. Р. |
3,6 |
13 |
9 |
4 |
|
|||||
3 |
Б.Д. |
3,6 |
12 |
7 |
5 |
|
|||||
4 |
И.А. |
3,8 |
18 |
16 |
2 |
|
|||||
5 |
З.О. |
3,8 |
19 |
15 |
4 |
|
|||||
6 |
П.И. |
4 |
17 |
16 |
1 |
|
|||||
7 |
Ф.Г. |
4 |
19 |
16 |
3 |
|
|||||
8 |
Ш.Е |
4,2 |
20 |
12 |
8 |
|
|||||
9 |
М.Д. |
4,3 |
19 |
15 |
4 |
|
|||||
10 |
К.О. |
4,4 |
18 |
15 |
3 |
|
|||||
11 |
И.О. |
4,4 |
20 |
14 |
6 |
|
|||||
12 |
Е.И. |
4,5 |
20 |
14 |
6 |
|
|||||
13 |
А.М |
4,6 |
20 |
13 |
7 |
|
|||||
14 |
Г.М |
4,7 |
19 |
13 |
6 |
|
|||||
15 |
Е.Т. |
4,8 |
19 |
12 |
7 |
|
|||||
16 |
С.М. |
4,8 |
20 |
11 |
9 |
|
|||||
17 |
К.А. |
4,9 |
13 |
10 |
3 |
|
|||||
18 |
С.О |
5 |
20 |
15 |
5 |
|
|||||
9Б |
|||||||||||
№ |
Фамилия |
Ср.балл |
Мат. Тест |
Верб. Тест |
Разница(В.-М.) |
||||||
1 |
Ф.Р. |
3,2 |
10 |
13 |
3 |
||||||
2 |
М.С. |
3,2 |
12 |
14 |
2 |
||||||
3 |
Ш.О. |
3,3 |
17 |
7 |
-10 |
||||||
4 |
О.М. |
3,3 |
8 |
14 |
6 |
||||||
5 |
Ф.А. |
3,4 |
12 |
15 |
3 |
||||||
6 |
В.Д |
3,5 |
12 |
16 |
4 |
||||||
7 |
З.В. |
3,6 |
13 |
11 |
-2 |
||||||
8 |
С.С. |
3,8 |
7 |
15 |
8 |
||||||
9 |
З.Р. |
3,8 |
19 |
12 |
-7 |
||||||
10 |
Т.И. |
3,9 |
19 |
13 |
-6 |
||||||
11 |
И.А. |
4 |
5 |
7 |
2 |
||||||
12 |
П.А. |
4 |
9 |
12 |
3 |
||||||
13 |
М.М. |
4,3 |
12 |
7 |
-5 |
||||||
14 |
О.О. |
4,5 |
6 |
8 |
2 |
||||||
15 |
К.Е. |
4,7 |
7 |
12 |
5 |
||||||
16 |
Д.Е. |
4,7 |
7 |
13 |
6 |
||||||
17 |
С.В. |
4,8 |
4 |
11 |
7 |
||||||
18 |
М.Е. |
5 |
14 |
8 |
-6 |
||||||
Приложение 2
Табл.4 Различия.
Paired Samples Test |
|||||||||
|
|
Paired Differences |
t |
df |
Sig. (2-tailed) |
||||
Mean |
Std. Deviation |
Std. Error Mean |
95% Confidence Interval of the Difference |
||||||
Lower |
Upper |
||||||||
Pair 1 |
A_VERB - B_VERB |
1,556 |
3,433780668 |
0,809349865 |
-0,1520234 |
3,263135 |
1,921982 |
17 |
0,071532199 |
Pair 2 |
MAT_9A - MAT_9B |
7,222 |
4,857444929 |
1,14491075 |
4,806671687 |
9,637773 |
6,308109 |
17 |
7,86356E-06 |
Pair 3 |
VERB_9A - MAT_9A |
-4,83 |
2,121320344 |
0,5 |
-5,88824112 |
-3,77843 |
-9,66667 |
17 |
2,53891E-08 |
Pair 4 |
VERB_9B - MAT_9B |
0,833 |
5,436802694 |
1,281466684 |
-1,87032504 |
3,536992 |
0,650297 |
17 |
0,524192504 |
Приложение 3
Табл. 5 Корреляции.
Correlations |
||||||
|
A_SRBALL |
A_MAT |
A_VERB |
B_SRBALL |
B_MAT |
B_VERB |
A_SRBALL |
1 |
|||||
A_MAT |
0,42177214 |
1 |
||||
A_VERB |
0,06738402 |
0,665703 |
1 |
|||
B_SRBALL |
0,96459898 |
0,340748 |
-0,05352 |
1 |
||
B_MAT |
-0,2980878 |
-0,13945 |
0,149084 |
-0,35368 |
1 |
|
B_VERB |
-0,3659645 |
-0,01843 |
0,562077 |
-0,41336 |
-0,00097 |
1 |