Белки

Белки – это высокомолекулярные соединения, молекулы которых представлены двадцатью альфа – аминокислотами, соединёнными пептидными связями – СО - NН -.Мономерами белков являются аминокислоты. Химическое строение белков весьма просто: они состоят из длинных цепей остатков аминокислот, соединенных между собой пептидными связями. (-СO-NH)

Углерод в пептидной связи соединяется с азотом. Пептидная связь между аминокислотами образуется следующим образом: от карбоксильной группы отсоединяется группа OH, а от аминогруппы соседней аминогруппы отсоединяется атом водорода.

      H 2 N-C-COOH+ N-C-COOH= H 2 N-C-CO-NO-NH-C-COOH+H 2 O При этом образуется молекула воды.

 Белки отличаются друг от друга

последовательностью 20 аминокислот в длинных цепях, поэтому не удивительно, что каждый вид растений или животных обладает своими собственными белками, специфичными для данного вида.

Составом аминокислот

Количеством аминокислот

В настоящее время известно огромное число белков с самыми разнообразными свойствами. Неоднократно делались попытки создать классификацию белков. В основе одной из классификаций лежит растворимость белков в различных растворителях. Белки, растворимые при 50% насыщения сульфата аммония, были названы альбуминами; белки же, которые в этом растворе выпадают в осадок были названы глобулинами.

Кислотные свойства аминокислот определятся карбоксильной группой (-СООН), щелочные – аминогруппой (-NH2). Каждая из 20 аминокислот имеет одинаковую часть, включающую обе эти группы (-CHNH2 – COOH), и отличается от любой другой особой химической группировкой R – группой, или радикалом.

Существуют:

·       Простые белки – состоящие из одних аминокислот. Например, растительные белки – проламины, белки кровяной плазмы – альбулины и глобулины.

·       Сложные белки – помимо аминокислот имеют в своём составе другие органические соединения (нуклеиновые кислоты, липиды, углеводы), соединения фосфора, металлы. Имеют сложные названия нуклеопротеиды, шикопротеиды и т. д.

Простейшая аминокислота – глицерин NH2 – CH2 – COOH.

Но разные аминокислоты могут содержать различные радикалы Молекулярная масса белков колеблется от нескольких тысяч до нескольких миллионов (большинство белков имеет молекулярную массу в пределах десятков - сотен тысяч).

Образование линейных молекул белков происходит в результате соединения аминокислот друг с другом. Карбоксильная группа одной аминокислоты сближается с аминогруппой другой, и при отщеплении молекулы воды между аминокислотными остатками возникает прочная ковалентная связь, называемая пептидной .

Существует 4 структурных уровня строения белка.

1) первичная структура белка имеет определенную последовательность аминокислот в молекуле белка. Аминокислоты соединяются дру с другом прочными пептидными связями.

2) Вторичная структура белка образуется из первичной и имеет вид спирали. При этом образуется более слабая водородная связь.

3) Третичная структура белка имеет вид шарика- глобулы. При этом возникает еще более слабая дисульфидная связь.

4) четвертичная структура белка характерна не для всех белков. Она возникает в результате соединения нескольких молекул белка с третичной структурой

Под влиянием различных факторов в белке сначала разрушается дисульфидные связи, потом водородные , в результате чего третичная структура превращается в о вторичную, затем в первичную. Этот процесс называется денатурацией. Если первичная структура не повреждена- процесс обратим. Процесс восстановления структур белка- ренатурация.

У белков очень сложное строение и на данном этапе развития науки очень сложно выявить структуру молекул белков.

Первый белок, у которого была расшифрована первичная структура, был инсулин. Это случилось в 1954 году. Для этого понадобилось около 10 лет. Синтез белков - очень сложная задача, и если ее решить, то возрастет количество ресурсов для дальнейшего использования их в технике, медицине и т.д., а также уже возможен биохимический и синтетический способы получения пищи.

А.Н. Несмеянов провел широкие исследования в области создания микробиологической промышленности по производству искусственных продуктов питания. Практическое осуществление путей получения такой пищи ведется в двух основных направлениях. Одно из них основано на использовании белков растений, например сои, а второе - на использовании белков продуктов, полученных микробиологическим путем из нефти.

.

Чем глубже химики познают природу и строение белковых молекул, тем более они убеждаются в исключительном значении получаемых данных для раскрытия тайны жизни. Раскрытие связи между структурой и функцией в белковых веществах - вот краеугольный камень, на котором покоится проникновение в самую глубокую сущность жизненных процессов, вот та основа, которая послужит в будущем исходным рубежом для нового качественного скачка в развитии биологии и медицины.

 Белки входят в состав живых организмов и являются основными материальными агентами, управляющими всеми химическими реакциями, протекающими в организме.

Одной из важнейших функций белков является их способность выступать в качестве специфических катализаторов (ферментов), обладающих исключительно высокой каталитической активностью. Без участия ферментов не проходит почти ни одна химическая реакция в живом организме. В каждой живой клетке непрерывно происходят сотни биохимических реакций. В ходе этих реакций идут распад и окисление поступающих извне питательных веществ. Клетка использует энергию, полученную вследствие окисления питательных веществ; продукты их расщепления служат для синтеза необходимых клетке органических соединений. Быстрое протекание таких биохимических реакций обеспечивают катализаторы (ускорители реакции) – ферменты.

Почти все ферменты являются белками (но не все белки – ферменты!). В последние годы стало известно, что некоторые молекулы РНК имеют свойства ферментов. Каждый фермент обеспечивает одну или несколько реакций одного типа. Например, жиры в пищеварительном тракте (а также внутри клетки) расщепляется специальным ферментом – липазой, который не действует на полисахариды (крахмал, гликоген) или белки. В свою очередь, фермент, расщепляющий крахмал или гликоген, -амилаза не действует на жиры. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту. В ходе этих операций ферментный белок не расходуется. Он соединяется с реагирующими веществами, ускоряет их превращения и выходит из реакции неизменным.

Известно более 2-х тысяч ферментов, и количество их продолжает увеличиваться. Все ферменты условно разделены на шесть групп по характеру реакций, которые они катализируют перенос химических групп с одной молекулы на другую;

Вторая важнейшая функция белков состоит в том, что они определяют механохимические процессы в живых организмах, в результате которых поступающая с пищей химическая энергия непосредственно превращается в необходимую для движения организма механическую энергию.

Третьей важной функцией белков является их использование в качестве материала для построения важных составных частей организма, обладающих достаточной механической прочностью, начиная с полупроницаемых перегородок внутри клеток, оболочек клеток и их ядер и заканчивая тканями мышц и различных органов, кожи, ногтей, волос и т.д.          

  Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.

            Регуляторную функцию выполняют белки-гормоны.

Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга.

Белки являются необходимой составной частью продуктов питания. Отсутствие или недостаточное количество их в пище вызывает серьезные заболевания.

Белки входят в состав всех живых организмов, но особо важную роль они играют в животных организмах, которые состоят из тех или иных форм белков (мышцы, покровные ткани, внутренние органы, хрящи, кровь).

Растения синтезируют белки (и их составные части a-аминокислоты) из углекислого газа СО2 и воды Н2О за счет фотосинтеза, усваивая остальные элементы белков (азот N, фосфор Р, серу S, железо Fe, магний Mg) из растворимых солей, находящихся в почве.

Животные организмы в основном получают готовые аминокислоты с пищей и на их базе строят белки своей организма. Ряд аминокислот (заменимые аминокислоты) могут синтезироваться непосредственно животными организмами.

1.

2.

n биуретовая реакция: фиолетовое окрашивание при обработке солями меди в щелочной среде (дают все белки),

n

n гидроксида натрия и нагревании.

3.