Постановка задачи линейного программирования и двойственная задача линейного программирования

Линейное программирование является составной частью раздела математики, который изучает методы нахождения условного экстремума функции многих переменных и называется математическим программированием. В классическом математическом анализе рассматривается задача отыскания условного экстремума функции. Тем не менее, время показало, что для многих задач, возникающих под влиянием запросов практики, классические методы недостаточны. В связи с развитием техники, ростом промышленного производства и с появлением ЭВМ все большую роль начали играть задачи отыскания оптимальных решений в различных сферах человеческой деятельности. Основным инструментом при решении этих задач стало математическое моделирование — формальное описание изучаемого явления и исследование с помощью математического аппарата.

Искусство математического моделирования состоит в том, чтобы учесть как можно больше факторов по возможности простыми средствами. Именно в силу этого процесс моделирования часто носит итеративный характер. На первой стадии строится относительно простая модель и проводится ее исследование, позволяющее понять, какие из существенных свойств изучаемого объекта не улавливаются данной формальной схемой. Затем происходит уточнение, усложнение модели.

В большинстве случаев первой степенью приближения к реальности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, предполагаются линейными. Здесь имеется полная аналогия с тем, как весьма важна и зачастую исчерпывающая информация о поведении произвольной функции получается на основе изучения ее производной — происходит замена этой функции в окрестности каждой точки линейной зависимостью. Значительное количество экономических, технических и других процессов достаточно хорошо и полно описывается линейными моделями.

Основные формы задачи ЛП.

Различают три основные формы задач линейного программирование в зависимости от наличия ограничений разного типа.

Стандартная задача ЛП.

или, в матричной записи,

где

Стандартная задача важна ввиду наличия большого числа прикладных моделей, сводящихся наиболее естественным образом к этому классу задач ЛП.

Каноническая задача ЛП.

или, в матричной записи,

Основные вычислительные схемы решения задач ЛП разработаны именно для канонической задачи.

Общая задача ЛП.

В этой задачи часть ограничений носит характер неравенств, а часть является уравнениями. Кроме того, не на все переменные наложено условие неотрицательности:

Здесь . Ясно, что стандартная задача получается как частный случай общей при ; каноническая — при .

Все три перечисленные задачи эквивалентны в том смысле, что каждую из них можно простыми преобразованиями привести к любой из двух остальных.

При изучении задач ЛП сложилась определенная терминалогия. Линейная форма

Двойственная задача линейного программирования.

Рассмотрим задачу ЛП

или, в матричной записи,

Задачей, двойственной к (1) (двойственной задачей), называется задача ЛП от  переменных  вида

или, в матричной записи,

где

Правила построения задачи (3) по форме записи задачи (1) таковы: в задаче (3) переменных  столько же, сколько строк в матрице  задачи (1). Матрица ограничений в (3) — транспортированная матрица  накладывается условие неотрицательности. Задача (1), в отличии от двойственной задачи (3) называется прямой.

Теорема двойственности. Если взаимодвойственные задачи (2), (4) допустимы, то они обе имеют решение и одинаковое значение.

Теорема равновесия. Пусть  то