Расчёт кран-балки

Министерство сельского хозяйства РФ

ФГОУВПО

Пермская государственная сельскохозяйственная

академия имени Д.Н.Прянишникова

Кафедра деталей машин

КУРСОВАЯ РАБОТА

по дисциплине: «Основы конструирования»

на тему: «Расчет мостового однобалочного крана»

Выполнил: студент группы М-51, шифр М-01-157

В.М. Соловьев

Проверил:

Кандидат технических наук доцент  В.С. Новосельцев

Пермь 2005

Задание.

Рассчитать механизм передвижения мостового однобалочного крана (кран-балки):

-                                             грузоподъемностью Q=1,7 т;

-                                             пролет крана LK= 10,6 м;

-                                             скорость передвижения V = 0,48 м/с;

-                                             высота подъема Н= 12 м;

-                                             режим работы средний;

-                                             управление с пола.

Кран работает в мастерской по ремонту сельскохозяйственной техники.

Мостовые однобалочные краны грузоподъемностью 1...5т регламентированы ГОСТ 2045 - 89*.

В соответствии с прототипом выбираем кинематическую схему однобалочного мостового крана (кран-балки) с центральным приводом и передвижной электрической талью (рис. 1). Согласно ГОСТ 22584 - 96 по грузоподъемности 1 т выбираем электроталь ТЭ 100-521 [1, стр. 215].

Рисунок 1. Мостовой однобалочный кран.

Расчет механизма передвижения крана проводим в следующем порядке.

1. Определяем размеры ходовых колес по формуле

                                                  (1)

Максимальную нагрузку на колесо вычисляем при одном из крайних положений электротали.

По ГОСТ 22584-96 [1, стр. 215] принимаем массу тали mт =180 кг = 0,18т (ее вес G7 = mTg ≈ 0,18×10 = 1.8кН) и длину L = 870 мм. Массу крана с электроталью выбираем приближенно по прототипу [1, стр. 214] mк ≈ 2,15т. Тогда вес крана Gк = mкg ≈ 2,15 × 10 = 21,5 кН. Ориентировочно принимаем

l ≈ L ≈ 0,87 м.

Для определения нагрузки Rmax пользуемся уравнением статики

∑M2 = 0 или – Rmax Lк+ (GГ+ GT)×(Lк – l) + (Gк – GT) × 0,5Lк =0             (2)

откуда

Rmax= =                               (3)

7 кН

При общем числе ходовых колес Zk = 4 нагрузка приходится на те два колеса крана, вблизи которых расположена тележка. Тогда

Rmax = R/2 = 27/2 = 13,5 кН = 13500 Н.                       (4)

Следовательно,

Согласно ГОСТ 3569 - 74 [1, стр. 252] выбираем крановое двухребордное колесо диаметром Dк = 200мм. Диаметр цапфы dц = Dк/(4...6) ≈ (50...35) мм. Принимаем dц = 50 мм.

Для изготовления колес используем сталь 45, способ термообработки нормализация (НВ ≈ 200). Колесо имеет цилиндрическую рабочую поверхность и катится по плоскому рельсу. При Dк ≤ 200 мм принимаем плоский рельс прямоугольного сечения [1, стр. 252], выбирая размер а по условию: а < В. При DK ≤ 200 мм ширина поверхности качения B = 50 мм. Принимаем а = 40 мм.

Рабочая поверхность контакта b = а - 2R = 40 - 2 × 9 = 22 мм.

Коэффициент влияния скорости Kv=1 +0,2 V = 1 + 0,2 ×0,48= 1,096.

Для стальных колес коэффициент пропорциональности а1 = 190.

Предварительно выбранные ходовые колеса проверяем по контактным напряжениям.

При линейном контакте

σк.л = а= 493 МПа                            (5)

Поскольку допустимые контактные напряжения для стального нормализованного колеса [σкл] =450...500 МПа, то условие прочности выполняется.

2. Определяем статическое сопротивление передвижению крана.

Поскольку кран работает в помещении, то сопротивление от ветровой нагрузки Wв не учитываем, т. е.

WУ = Wтр + Wук                                              (6)

Сопротивление от сил трения в ходовых частях крана:

                                         (7)

По таблице 1.3 [1, стр. 9] принимаем, μ = 0,3 мм, а по таблице 1.4 для колес на подшипниках качения ƒ=0,015, Кр= 1,5. Тогда,

Сопротивление движению от возможного уклона пути.

Wyк = (G+ Gк)×α = (17 + 21,5)×0,0015 = 0,058 кН = 58 Н.            (8)

Значения расчетного уклона а указаны на с. 9.Таким образом, получаем

Сила инерции при поступательном движении крана

Fи = (Q + mк)v/tп = (1700 + 2150) х 0,48/5 = 370 Н,                       (9)

где tп – время пуска; Q и mк – массы соответственно груза и крана, кг.

Усилие, необходимое для передвижения крана в период пуска (разгона),

                      (10)

3. Подбираем электродвигатель по требуемой мощности

            (11)

Предварительно принимаем η = 0,85 и ψп.ср.= 1,65 (для асинхронных двигателей с повышенным скольжением) [1, стр. 49].

По таблице 27 приложения [1] выбираем асинхронный электродвигатель переменного тока с повышенным скольжением 4АС71А6УЗ с параметрами: номинальная мощность Рт = 0,4 кВт; номинальная частота вращения

nдв = 920мин-1; маховой момент ротора (mD2)р = 0,00068 кг×м2; Tп/Tн = 2; Tmax/Tн= 2. Диаметр вала d= 19 мм.

Номинальный момент на валу двигателя

                   (12)

Статический момент

                                        (13)

4.Подбираем муфту с тормозным шкивом для установки тормоза. В выбранной схеме механизма передвижения (см. рис. 1) муфта с тормозным шкивом установлена между редуктором и электродвигателем. По таблице 56 приложения подбираем упругую втулочно-пальцевую муфту с наибольшим диаметром расточки под вал 22 мм и наибольшим передаваемым моментом [Тм] = 32 Н×м.

Проверяем условие подбора [Тм] ≥ Тм. Для муфты Тм= 2,1×Тн = 2,1×4,16 = 8,5 Н×м. Момент инерции тормозного шкива муфты Iт = 0,008 кг-м2. Маховой момент (mD2)T= 4×Iт = 0,032 кг-м2.

5. Подобранный двигатель проверяем по условиям пуска. Время пуска

                    (14)

Общий маховой момент

  (15)

Относительное время пуска принимаем по графику (см. рис. 2.23, б) в зависимости от коэффициента α=Тсн. Поскольку α = 2,23/4,16 = 0,54, то tп.о=1.

Ускорение в период пуска определяем по формуле :

an = v/tn = 0,48/2,85=0,168 м/с2, что удовлетворяет условию.

6. Проверяем запас сцепления приводных колес с рельсами по условию

пуска при максимальном моменте двигателя без груза

                             (16)

Статическое сопротивление передвижению крана в установившемся режиме без груза

                    (17)

Ускорение при пуске без груза

                                                  (18)

Время пуска без груза

                                              (19)

Общий маховой момент крана, приведенный к валу двигателя без учета груза,

           (20)

Момент сопротивления, приведенный к валу двигателя при установившемся движении крана без груза

                          (21)

По графику на рисунке 2.23 [1, стр.29] при α = Тс'/Тн = 1,633/4,16 = 0,393 получаем tп.о.= 1

Тогда время пуска

                            (22)

Ускорение при пуске

Суммарная нагрузка на приводные колеса без учета груза

                     (23)

Коэффициент сцепления ходового колеса с рельсом для кранов, работающих в помещении, φсц = 0,15.

Запас сцепления

что больше минимально допустимого значения 1,2.

Следовательно, запас сцепления обеспечен.

7. Подбираем редуктор по передаточному числу и максимальному вращающему моменту на тихоходном валу Трmax. определяемому по максимальному моменту на валу двигателя:

                            (24)

В соответствии со схемой механизма передвижения крана (см. рис. 1) выбираем горизонтальный цилиндрический редуктор типа Ц2У. При частоте вращения n = 1000 мин-1 и среднем режиме работы ближайшее значение вращающего момента на тихоходном валу Ттих = 0,25 кН м = 250 Н м, что больше расчетного Тр mах. Передаточное число uр = 18.

Типоразмер выбранного редуктора Ц2У-100.

8. Выбираем тормоз по условию [Тт] > Тт и устанавливаем его на валу электродвигателя.

Расчетный тормозной момент при передвижении крана без груза

                     (25)

Сопротивление движению от уклона

                          (26)

Сопротивление от сил трения в ходовых частях крана

       (27)

Общий маховой момент

      (28)

Время торможения:

                        (29)

Максимально допустимое ускорение:

  (30)

Число приводных колес znp = 2. Коэффициент сцепления φсц = 0,15. Запас сцепления Кц = 1,2.

Фактическая скорость передвижения крана

                      (31)

т. е. сходна с заданным (исходным) значением.

Расчетный тормозной момент

По таблицам 58 и 62 приложения выбираем тормоз ТКТ-100 с номинальным тормозным моментом [TТ] = 10H·м, максимально приближенным к расчетному значению Тт.

Подобранный тормоз проверяем по условиям торможения при работе крана с грузом.

Проверка по времени торможения:

                                        (32)

Маховой момент масс:

     (33)

Статический момент сопротивления движению при торможении:

                                                 (34)

Сопротивление движению при торможении:

                                              (35)

Сопротивление от сил трения:

  (36)

Сопротивление от уклона:

(37)

Следовательно,

Тогда статический момент сопротивления:

а время торможения:

что меньше допустимого [tт] = 6...8 с.

Проверка по замедлению при торможении:

что меньше максимально допустимого значения для кранов, работающих в помещении, [ат] < 1 м/с2.

Следовательно, условия торможения выполняются.

9. Определяем тормозной путь по формуле:

                     (38)

По нормам Госгортехнадзора при числе приводных колес, равном половине общего числа ходовых колес (см. табл. 3.3), и при фсц = 0,15

              (39)

Список литературы

1.    Проектирование и расчет подъемно-транспортирующих машин сельскохозяйственного назначения/ М.Н.Ерохин, А.В.Карп, Н.А.Выскребенцев и др.; Под ред. М.Н. Ерохина и А.В. Карпа. – М.: Колос, 1999.

2.    Курсовое проектирование грузоподъёмных машин /  Н.Ф Руденко,      М.П.Александров, А.Г. Лысяков.­- М.: издательство «Машиностроение», 1971.