Расчет наматывающего устройства
4.Расчетная часть
4.1. Расчет наматывателя, тормозного устройства и перематывателя
В целях сохранности фильмокопий особое внимание должно быть уделено наматывающему и тормозному устройству, обеспечивающих плотную намотку рулонов, в которых отсутствует межвитковое скольжение, а усилия на межперфорационные перемычки не должны превышать 5Н. К наматывающим устройствам предъявляются следующие требования:
1)
2)
3)
Аналогичные требования предъявляются и к тормозному устройству, когда оно работает в режиме перемотки.
Исходные данные:
-
-
-
-
-
- . 10-4 (м).
4.1.1. Выбор радиуса сердечника
Выбор начального радиуса рулона имеет важное значение. Известно, что с увеличением начального радиуса R0 снижается характеристический коэффициент N для разных типов наматывателей. Увеличение R0 целесообразно и для создания условий наматывания рулона без затягивания витков. Оптимальное соотношение конечного RК и начального R0 радиусов рулонов равно двум. Конечный радиус рулона определяем по формуле:
где S – толщина киноленты;
LK – емкость рулона.
Если задаться соотношением ________ , то получим выражение для оптимального радиуса сердечника:
_________________________-
_________________________
В рулоне, наматываемом на сердечник такого радиуса, должно отсутствовать затягивание витков. В литературе [5] приведена таблица размеров, применяемых в соответствии с ГОСТ 11669-75 сердечников. Из нее видно, что ни один из применяемых сердечников не обеспечивает оптимальных условий наматывания киноленты.
Поэтому принимаем __________
Рассчитываем конечный радиус рулона:
___________________________
4.1.2. Выбор величины минимального натяжения ленты
В кинопроекционной аппаратуре эксплуатируется, как правило, сильнокоробленая лента, обладающая большой величиной жесткости на изгиб. Поэтому, чтобы достигнуть оптимальной плотности рулона, необходимо обеспечить большие величины натяжения киноленты. В процессе эксплуатации фильмокопии подвергаются многократному перематыванию на кинопроекторе или перематывателе. В этом случае требования к плотности рулона также высоки, что и обеспечивает высокие значения ___________
Исходя из сказанного, выбираем ___________ , обеспечивающую плотность рулона 96%.
4.1.3. Условия отсутствия затягивания витков в формируемом рулоне
Причиной возникновения затягивания витков в наматываемом рулоне, как показали многочисленные исследования, являются, в основном, такие дефекты киноленты, как сабельность и коробленность. Вследствие этих дефектов при наматывании киноленты в рулон имеет место неплотное прилегание витков друг к другу, что делает возможным их затягивание.
Подробный анализ этого процесса, выполненный А.М.Мелик-Степаняном и подтвержденный экспериментально на кафедре киновидеоаппаратуры, позволил найти условия, при которых возможно наматывание рулона без затягивания витков. Важно отметить, что при этом нет необходимости полностью устранять межвитковое пространство в формируемом рулоне – для этого требуются чрезмерно высокие значения натяжения ленты (порядка 70-80 Н). Достаточно достичь равновесия моментов, с одной стороны, развиваемого наматывателем, с другой стороны - моментов трения между витками в процессе наматывания всего рулона.
Исходя из этого, было получено выражение для граничных условий затягивания витков в наматываемом рулоне [1]:
(4.1)
где Тк – конечное натяжение наматываемой ленты;
R0, Rк – конечный и начальный радиусы рулона;
ρn – радиус формируемого витка.
Коэффициенты А и а характеризуют физико – механические свойства наматываемой ленты:
А=9,8ּВּγּμ,
Где В – ширина киноленты;
γ – удельная плотность ее материала;
μ – коэффициент трения между витками.
а=2ּπּμ+1.
Подставим числовые значения в выражение (4.1):
Таблица 4. SEQ Таблица * ARABIC 1
Расчет граничной кривой наматывателя
R,м |
Tгр,Н |
0,1 |
5,32 |
0,11 |
4,74 |
0,12 |
4,25 |
0,13 |
3,81 |
0,14 |
3,41 |
0,15 |
3,04 |
0,16 |
2,69 |
0,17 |
2,36 |
0,18 |
2,05 |
0,19 |
1,74 |
0,2 |
1,45 |
Рис.4.1.
Предварительно выбираем характеристику наматывателя в виде прямой, проходящей через точки Тнач=8 Н и Ткон=6 Н.
Вывод: так как характеристика наматывателя расположена выше граничной кривой, то затягивания витков не происходит.
4.2.Расчет наматывающего электродвигателя глубокого скольжения (ЭДГС)
Выражение характеристики наматывателя – ЭДГС в общем виде:
(4.2)
где М0 – статический момент электродвигателя(начальный момент, когда ротор находится в покое);
nx – число оборотов ротора электродвигателя на холостом ходу;
i – передаточное отношение редуктора;
η – КПД редуктора;
Vл – скорость движения киноленты в установившемся режиме.
Для определения рабочего участка введем понятие "коэффициент начального скольжения а ".
(4.3)
где n0 – число оборотов вала электродвигателя в начале намотки рулона.
Тогда
(4.4)
причем
(4.5)
Нетрудно видеть, что при а=2 Dэ= D0, т.е. начало характеристики будет совмещено с экстремальной точкой, а вид характеристики – убывающий. Анализ показывает, что с возрастанием а величина N также возрастает и, следовательно, целесообразно при выборе параметров наматывающего электродвигателя руководствоваться величиной а=2, т.е. началом рабочего участка D0= Dэ.
Тогда выражение для характеристики наматывателя приобретет более простой вид:
(4.6)
причем передаточное отношение редуктора можно определить из выражения
(4.7)
Или, учитывая, что а=2,
(4.8)
Максимальное натяжение, развиваемое наматывающим электродвигателем, определяется из выражения
(4.9)
Характеристический коэффициент наматывающего электродвигателя, работающего в таком режиме, определяется следующим образом:
(4.10)
Рассчитаем наматывающий электродвигатель.
Исходные данные: формат киноленты 35 мм; емкость рулона Lк=600 м; минимальное натяжение ленты Tmin=6 Н; диаметр сердечника D0=0,2 м; скорость движения ленты Vл=0,456 м/с; толщина киноленты s=0,15ּ10-3 м; КПД редуктора η=0,9.
1. Dк:
(4.11)
Dк=0,393 м.
2. nx) и габаритами (см. табл.4.1[1]).
Пусть, достаточно приемлемым будет nx=1400 об/мин.
Пригоден такой электродвигатель, статический момент М0 которого будет достаточным для обеспечения требуемой величины натяжения ленты.
Поэтому дальнейший ход расчета будет следующим:
3.
i=16,07.
Округлим i до целого числа. Возьмем i=16.
4. min, и помня, что требуется убывающая характеристика наматывателя, будем иметь в виду, что Тmin= Тк. Тогда, подставив в выражение (4.6) D=Dк, найдем необходимое значение момента электродвигателя М0:
(4.12)
М0=0,11 Нּм.
По имеющимся теперь М0 и nx выберем электродвигатель. В данном случае нам подходит ЭДГС АСМ_400 (см. табл.4.1[1]). Его размеры следующие: D=60 мм, l=120 мм.
5. Dэ=D0, то
(4.13)
Тнач=7,92 Н.
6. N, который определим, воспользовавшись выражением (4.10):
N=1,32.
7.
Таблица 4. SEQ Таблица * ARABIC 2
Расчет характеристики ЭДГС наматывателя
D,м |
T,H |
Tгр,Н |
0,2 |
7,92 |
5,32 |
0,22 |
7,85 |
4,74 |
0,24 |
7,7 |
4,25 |
0,26 |
7,5 |
3,81 |
0,28 |
7,27 |
3,41 |
0,3 |
7,04 |
3,04 |
0,32 |
6,81 |
2,69 |
0,34 |
6,58 |
2,36 |
0,36 |
6,36 |
2,05 |
0,38 |
6,14 |
1,74 |
0,393 |
6 |
1,45 |
На (рис.4.2) показана характеристика ЭДГС наматывателя.
4.3.Пусковой период наматывающих устройств
Расчет пускового периода наматывателя – электродвигателя глубокого
скольжения
Скорость приема ленты в течение пускового периода определяется следующим выражением:
(4.14)
где (4.15)
(4.16)
В выражениях (4.15) и (4.16) присутствуют уже известные величины, определенные при расчете установившегося режима наматывающего электродвигателя: М0 – статический момент ЭДГС; nx – число оборотов на холостом ходу; i – передаточное отношение редуктора; η – КПД редуктора.
Однако в эти выражения входят также и неизвестные еще величины:
J – момент инерции вращающихся частей наматывателя;
МТ – момент трения в опорах вала наматывателя.
Момент трения в подшипниках качения достаточно мал, и, как правило, его принимают равным нулю.
Момент инерции вращающихся частей наматывателя определяется следующим образом:
(4.17)
где Jрул – момент инерции рулона;
(4.18)
здесь q – масса одного прогонного метра киноленты;
Jред.пр. – момент инерции редуктора, приведенный к валу наматывателя;
Jрот.пр. – момент инерции ротора, приведенный к валу наматывателя.
Рассчитаем пусковой период ЭДГС для двух случаев:
1) R=R0,
2) R=Rк).
Исходные данные: М0=0,11 Нּм; nx=1400 об/мин; i=16; η=0,9; Lк=600 м.
1. Определим момент инерции вращающихся частей наматывателя, пользуясь выражением (4.17). В нашем случае, когда пусковой период определяется для начала намотки R=R0 и, следовательно, рулон еще не намотан, так что Jрул=0. Тогда выражение (4.17) будет выглядеть следующим образом:
(4.19)
Момент инерции бобины Iб, найдем по формуле (20):
(20)
где Jд – момент инерции дисков бобины;
Jс - момент инерции сердечника бобины;
Jв - момент инерции втулки бобины;
Jот - момент инерции отверстий дисков.
(4.21)
(4.22)
(4.23)
(4.24)
В формулах (4.21 – 4.24):
R=0,5.D – наружного диаметра дисков,
r=0,5.d – внутреннего диаметра дисков, принимаем равным наружному диаметру втулки;
r1=0,5.d1 – внутреннего диаметра втулки;
R1=0,5.D1 –диаметра отверстий, сделанных в дисках бобины;
R2=0,5.D2 –диаметра осевой линии, проходящей через центры отверстий дисков;
γ =7,8.103 кг.м3 – плотность стали;
h – толщина дисков;
l – длина втулки бобины;
l1 – длина сердечника бобины;
n – количество отверстий в диске.
Подставим значения в формулы (4.21 – 4.24):
Подставим полученные значения в выражение (4.20):
Момент инерции редуктора будет зависеть от его вида и количества ступеней. При заданном передаточном отношении i=16 воспользуемся двухступенчатой цилиндрической зубчатой передачей (рис.4.3)
Схема двухступенчатого зубчатого редуктора
ЭДГС |
Рис.4.3.
Приведем геометрический расчет редуктора, необходимый как для проектирования наматывателя, так и для расчета момента инерции вращающихся частей наматывателя.
i = iб.iт .
Пусть iб = iт = i1/2; iб = iт =4.
Выберем минимальное число зубьев шестерни, находящейся на валу ЭДГС. Возьмем Z1=25; тогда число зубьев колеса быстроходной ступени
Z2=i. Z1; Z2=25.4=100.
Модуль зацепления m выбираем по стандарту СЭВ [9]. Чтобы не увеличивать габариты редуктора, желательно выбирать m не очень большим, но не меньше единицы. Возьмем m=1 и определим приближенно диаметры делительных окружностей шестерни и колеса:
d1=Z1.m; d1=25.1=25мм=0,025м;
d2=Z2.m; d2=100.1=100мм=0,1м.
Ширину венцов шестерни и колеса определим по формуле [9]:
b=ψbd.d + (0,2÷0,4).m,
где d – диаметр колеса или шестерни;
ψbd – коэффициент колеса. ψbd зависит от способа крепления колеса на валу, расположения опор, твердости материала шестерни [9].
Примем ψbd=0,4, тогда
b1=0,4.25 + (0,2÷0,4).1=10мм.
Теперь рассчитаем тихоходную передачу. Возьмем число зубьев шестерни Z2’=25; тогда число зубьев колеса тихоходной ступени
Z3=i. Z2’; Z3=25.4=100.
Возьмем m=1 и определим приближенно диаметры делительных окружностей шестерни и колеса:
d2’=Z2’.m; d2’=25.1=25мм=0,025м;
d3=Z3.m; d3=100.1=100мм=0,1м.
Примем ψbd=0,4, тогда
b2’=0,4.25 + (0,2÷0,4).1=10мм.
Приближенное значение момента инерции можно определить по формуле [9]:
(4.25)
где m – масса шестерни (колеса);
d – диаметр его делительной окружности.
Масса шестерни (колеса) m=V.ρ=πּr2ּbּρ.
Подставим значения в формулу (4.25):
Необходимо привести моменты инерции колес к валу наматывателя:
(4.26)
Тогда приведенные моменты инерции будут:
Суммарный момент инерции редуктора, приведенный к валу наматывателя, составит:
Определим момент инерции ротора Jрот. Момент инерции ротора можно рассчитать приближенно, как момент инерции цилиндра, выполненного из алюминиевого сплава и занимающего порядка 50% объема электродвигателя. Для ЭДГС АСМ_400 длина корпуса составляет 120 мм; диаметр – 60мм. Его объем найдем таким образом:
Тогда
Момент инерции ротора можно найти по следующей формуле:
(4.27)
где Мрот=Vрот.ρрот , где ρрот – удельная плотность материала ротора.
Для алюминиевых сплавов ρ=2,8.103кг/м3.
Подставим найденные значения в выражение (4.27):
Момент инерции ротора, приведенный к валу наматывателя, определяется так же, как и приведенный момент инерции шестерни.
А суммарный момент инерции вращающихся частей наматывателя найдем по формуле (4.19):
Вернемся к выражениям (4.15) и (4.16), подставим в них все известные нам величины и получим значения коэффициентов a и b:
Тогда выражение (4.14) с учетом того, что R=R0=0,1м, преобретает следующий вид:
Таблица 4.3
Расчет скорости наматываемой ветви киноленты (R=R0)
t,c |
a.t |
e(-at) |
1-e(-at) |
Vн,м/с |
0 |
0 |
1 |
0 |
0 |
0,1 |
0,197 |
0,821 |
0,179 |
0,164 |
0,25 |
0,493 |
0,611 |
0,389 |
0,356 |
0,5 |
0,985 |
0,373 |
0,626 |
0,574 |
0,75 |
1,478 |
0,228 |
0,771 |
0,707 |
1 |
1,97 |
0,139 |
0,86 |
0,788 |
1,25 |
2,463 |
0,085 |
0,915 |
0,837 |
1,5 |
2,955 |
0,052 |
0,948 |
0,867 |
1,75 |
3,448 |
0,032 |
0,968 |
0,886 |
2 |
3,94 |
0,0190 |
0,981 |
0,897 |
3 |
5,91 |
0,003 |
0,997 |
0,913 |
4 |
7,88 |
0,0004 |
1 |
0,915 |
5 |
9,85 |
0 |
1 |
0,915 |
6 |
11,82 |
0 |
1 |
0,915 |
7 |
13,79 |
0 |
1 |
0,915 |
Построим график зависимости Vн1(t) – скорости приема ленты наматывателем и Vл(t) – скорости подачи ленты механизмом транспортирования.
Вывод: провисания ленты не будет, поскольку значение функции Vн1(t) в любой момент времени превосходит значение функции Vл(t).
Теперь проведем подробные расчеты для полного рулона, т.е. для случая, когда R=Rк=0,201м.
Общий момент инерции вращающихся частей наматывателя определится в этом случае из выражения (4.17), т. е. В него будет входить Jрул – момент инерции полного рулона, который найдем по формуле (4.18). В нашем случае, если учесть, что q=7.10-3кг/м для 35-мм киноленты,
Тогда полное значение J составит:
Тогда значения коэффициентов a и b соответственно составят:
Тогда выражение (4.14) с учетом того, что R=Rк=0,201м, преобретает следующий вид:
Таблица 4.4
Расчет скорости наматываемой ветви киноленты (R=Rк)