Шпаргалка по физике, 1 семестр, Механика

1,2 Элементы кинематики М Т  Ур-е движ. , скорости.

Матерьяльной точкой называют тело, размерами и формам которого в данной задаче можно пренебреч. Любой вектор можно разложить по базису: r=ix+jy+kz модуль вектора

/r/=Öx2+y2+z2. Положение мат точки опр. r=r(t) или x(t) y(t) z(t) Траектория-совокупность последовательных положений мат. точки в пространстве при ее движении. Сумма длин всех участков траектории пройденного за промежуток времени – длина пути. Средняя скорость за пром времени Vср=êr/êt  Средняя путевая скорость vср=êS/êt. Скоростью ( мгновенной  скоростью)-

v= limêt-0 vср= limêt-0 êr/êt =dr/dt v-производная радиуса- вектора по времени.Определение пройденого пути  S= интеграл t до t0 vdt  равномерное прямолинейное дв. S=vt си 1 м/с.

1.3 Ускорение матерьяльной точки Нормальное и тангациональное уск. Радиус кривизны траектории.

Средним ускорением точки в интервале времени t2-t1=êt наз. Вектор аср равный отношению вектора изменения скорости êv=v2-v1 к промежутку вр. êt за кот изменение произошло  аср=êv/êt Мгновенным ускорение наз предел среднего уск при êt-0  а= limêt-0 аср= limêt-0 êv/êt=dv/dt= d2r/dt2  a= limêt-0 dv1/dt + limêt-0 dv2/dt= at+an  at танганцион. Изменение скорости по

величине, напрвлен по касательной тр. ан нормальное изменен. Скорости по направлению. Направлен по радиусу кривизны.at=dv/dt an=v2/R Ci 1 m*c-2

1.4 Закон динамики Ньютона

Свойство всех тел сохранять неизмениым свое движение при отсутствии внешнего воздействия и стремиться сохранять сост движения наз. Инерцией.  ПЕРВЫЙ ЗАКОН любое тело нах в сост покоя или равн. Движения пока внешнее силы не вызовут измене-

ние этого состояния. Масса – физ. Характеристика материи, явля-

ющейся выражением и мерой одновремено гравитационых свойств материи и ее инерционых свойств.

F=G*m1 m2/r2(грав. Масса) Инерционая масса F=m a  cи=1кг

1.5 Основной закон динамики материальной точки.

Сила – векторная величина, являющаяся мерой механиче-ского взаимодействия материальных тел K=mv Изменение количества дв. Равно импульсу действующей силы и происходит в напривле-

нии действия силы. DK=Fdt. F=dK/dt= d(mv)/dt       cu- 1kg*m/c2

1.6 Внешние и внутрение силы . 3 закон Ньютона.

Действию всегда есть равное и против- ное противодействие, иначе взаимодействие двух тел равны между собой и напр. в противоположеные стороны.В лю- бой механической системе сумма всех внутрених тел = 0 Пусть на каждую мат точку действуют внутрение силы взаимодействия и внешние силы. åd(mivi)/dt=åFi вн+åFi вну    åd(mivi)/dt=dåmivi/dt= dK/dt  изменен. Импульса системы K=åmivi Закон измен импульс сист dK/dt=Fвнеш

1.7 Поступательное движение твердого тела. Центр масс мех. Системы и закон его движения.

Абсолютно твердое тело- деформацией которого в условиях данной задачи можно пренебречь. Растояние точек при движении не изменяется и скорость их одинак. Центром инерции (масс) системы мат точек, радиус вектор Rc=åmiri/m Cкорость центра инерции vc=drc/dt=1/mdåmiri/dt=1/måd(mir)i/dt=1/måmivi=K/m

Закон движения центра инерции мех сист. dK/dt=Fвнеш

dvc/dt=ac Точка приложеная силы тяжести тела (равнодейс силы тяжести всех частиц тела – центр тяжести телаr ц т=1/mgåmgri=

=1/mgåmigiri=gi/mgåmiri=1/måmiri=r c (g вектор везде) плотность тела p=dm/dV Тело наз. Однородным если плотность во всех точках одинакова . масса такого тела  m=pV неоднорд m=(интег по V )pdV средней плотностью неоднор тел=а p=m/V

1.8 Закон сохранения импульса и его связь с однор прос

Для замкнутой системы главный вектор Fвнеш=0 и K=åmi vi= const При любых процессах происходящих в замкну-той системе, скорость ее центра инерции не измен.Vc=cons

1.9a Движение тела переменой массы ( ур Мещерского)

Нач момент t. Ракета имела массу M скоростьv нач импул.

K=Mv. За пром времени dt отделилась масса dM со скор С

Отн ракеты в результ. M-dM c+dv и импульс ракеты стал

K2=(M-dM)(v+dv)=Mv+Mdv-vdM-Mdv=Mv+Mdv-vdM

Импульс отработаных газов K3=dM(v+c) сумма K4=K2+K3

Изменение импульса dK=K4-K1=Mdv+cdM=Fdt 

M(dv/dt)=F-mc – ур описывающее движение тела переменой массы – ур Мещерского. mc – реактивная сила знак «-« озн. направлен Противоп. Вектору скорости.

1.9 b Абсолютно неупругий удар шаров.

Столкновение тел при котором за весьма малый промежут. Времени происходит значит измен скоростей тел наз- удар

Удар наз абсол неупругим если после удара теле движутся как одно целое. При ударе двух шаров массы m1 m2 ск.v1v2

Зак сохр импульса m1 v1+m2 v2=(m1+m2)u   u= m1 v1+m2 v2/

/m1+m2 если скор. После удара u=0 то мех движ перешло в тепловое хаотическое дв молекул ( шары нагрелись )

1,10 Энергия как универ мера различ форм дв материи

Энергия –универс мера движен материи во всех ее формах

Энерг делится : механическую, внутр (тепловую) электро-

мгнитную, ядерную. Любое тело обл запасом энергиим, она обл свойством адитивности, энегрия системы есть функция состояния. Величины характ количествено мате-рию – масса и движение – энергия , взаимо связ законом E=mc2  c скорость света в вакуме.

1,11 Работа силы.

Процесс изм энергии под действием сил наз процессом совершения работы. Работа, совершоная системой в любом процессе – мера изм энергии в этом процессе. Совершонн. Работа есть форма передачи энергии.dА=Fdr=Fv dt в скаля форме dA=FdScos a = Fz dS dS-длина пути а-угол между F и dr  Fz=Fcos a – проекц силы на направление перемещен. Если

F, dA >0 сила движущая , <0 –тормозящая. Работа внутри сил твердого тела = 0. Поступат движение твердого тела  dA=Fвнешdrc=Fвнеш vc dt =vc d K =vc d ( m vc) Работа совершоная на конечном участке L точки приложения силы F выражается криволинейным интегралом  A=интегр по L Fdr=интегр по L FtdS Силы, работа кот зависит только от нач. и конеч  точек их положения и не зависит от законов их движения по траектории назыв. Тангециальным. Работа потен силы приперемещении точки в доль замкнутой траектории = 0.

круг интеграл Ft dS=0 Поле сил наз стационарны. Если ¶F/¶t=0 Диссипативные силы-суммарная работа при любых перемещениях всегда отрицательна (трение,скольжение, сопрот.) Гироскопические, силы зависящие от скорости мат точки, на которую они действ. И направ перепндикулярно этой скорости ( сила Лоренца) Их работа всегда = 0 . Работа постояной силы на пути S. A=FScos a,  при а =0 A=FS. CИ-1Дж.Характеристика работы: мгновеная мощность – скаляр-ная физич велич N=dA/dt=Fdr/dt=Fv= Ftv  N=A/t 1Дж/1с=1Вт

1.12 Кинетиче энергия и ее связь с работ внеш внут сил

Кинетическая энергия тела- наз энерги механич движения под дейст силы F  –   dEk=dA=vdK=vdK=vd(mv) В Нютон мех m=const Ek=mv2/2=Ek(v) Работа переменой силы

А= интегр от mv2 по mv1 vd(mv)= mv22/2- mv21/2=

=Ek2-Ek1=êEk Кинетич энерг тела Ek=1/2интегр по m v2dm= ½ интегр по V pv2dV Т-ма Кенига К Э мех системы = сумме К Э, которую бы имела мат точка облад массой всей системы , и движуйся со скоростью ее цетра инерции и К Э той же системы в ее движении относ поступательног движения системы отсчета с началом в центре инерции . Ek=mvc2/2+E1k. E1k-КЭ сист в сис отсчета S1 движуйщейся относит S и v=vc

1.13 Поле как форма материи, осущ силов вз меж част веществ

Физ поле – сист обладающие бсконечно больш. числом степеней свободы.- число независимых кординат которые надо задать для опредиления системы в пространстве.

1.14 Потенциальная эн-я мат точки и ее связь с силой.

Потенциальная Эн – взаимодействия различных частей одной сист

Работа = уменьшению энергии в этом процессе А=-ÎEp=Ep1-Ep2  Работа потен сил при бескончно малом измен конфи сист dА=-dEp

Работа внеш сил идет на увеличение потен эн системы dАвнеш=dEp

Градиент – обьемная производная скалярного поля ( поверхн уров-ня) скорость изм функции u в направ к нормали n к поверх уровня в этой точке grad u = ¶u/¶n, grad u=lim V-0 f инт undS/V интегр по замкн S охват обьем V. В задачах используется Ep=mgh

1.15 Потенц эн сист, мат точки в поле централных сил напряж.

На мат точку действуют разн силы F проход через центр. И завис только от растояния F=Fr(r)r/r Если мат точка m притягив к центру сил М, то Fr(r)<0, оталкив >0. При перемещении мат точки m из 1 в бесконечность ( поле отсут) Внеш силы выпол работу кот идет на увел  потен. Эн. Сист dEp=dAвнеш=Fdr=Frdr=dEp Þ интег от ¥ по V Fr(r)dr=Ep-Ep(¥) полагают Ep(¥)=0 тогда Ep=- интег от ¥ по V Fr(r)dr.

Потенц силы соверш работу dA=-dEp=Fdr

1,16 Закон сохран мех эн. И его связь с однородностью времени

Мех. Эн - энерг мех движения и взаимодействия. E=EK+Ep Мех эн. Замкнутой сист не измен с течением времени, если все внут. силы действ этой системы потенциальны (тяжест, упруг) Измен энерг сист при взаимодействии с внеш телами = энерг получен от внешн тел. Состояние из кот сист вывод в резул внеш воздейст – сост мех равновесия системы.

1.17 Удар абсолютно неупругих и упругих тел.

Удар – столкн тел при кот за мал промеж времени происх. Значит измен скоростей тел. Если скор тел напр паралейно – удар прямой. Закон сохр импульса u=m1v1+m2v2/m1+m2. Не упруг удар, до удара E1=m1v12/2+ m2v22/2+Ep1 после удара E2=(m1v1+m2v2)2/2(m1+m2)+Ep2

Изм энерг - ÎE=E2-E1 <0 мех эн умен пошла на деформ шаров.

b) 2 тело до удара покой. -ÎE/E1=m2/m1+m2  2) Абсолютно уп удар.

- если мех энер системы не изменяется v = 2m1v1+(m2-m1)v2/m1+m2 для второго тела также.

1.18 Вращательное движение Угловые скор. и ускор. Связь с линейной скоростью и ускорением точек вращающегося тела.

Движение твердого тела при 2 неподвыжных точках наз вращател.

2 точки – ось вращения. Угл скор.- w=dj/dt вектор w=dj/dt при равномерн. w=j/t СИ – 1с-1 растояние dS=v dt скорость v=wR век v=w*R Число оборот за ед времени – частота вращения n=1/Т=1гц При равн-ном вращении w=2p/Т=2pn Неравномерное вращение – угловое ускорение e=dw/dt = d2j /dt2 Если движ ускор то вектора - w e ­­ если замедл w e ­¯ Если равнопеременое вращение e=const w=w0+et , j=w0t+et2/2 ,  /e/=1рад/с2-2  ,   at=dv/dt=dw/dt*R=eR an=v2/R=w2R2/R=w2R    ,   a=Öe2R2+w4R2=RÖe2+w4

1.19 Момент силы и момент импульс мех сист Ур дин вращ дв

Для характ. Внеш мех воздействия на тело, привод к измен вращат движения – момент силы. – F отност неподв точки 0 (полюса) – вект величина М = векторному произв радиуса вектора r проведе-ного из точки 0 в точку прилож силы В на вектор силы F ,   M=r*F

Модуль момента сил М=r F sin a = F r sin a =F l, l – длина перепе- ндикуляра опущеного из 0 на линию силы F  Си М=1Н*м  Главн момент сил М=åri*Fi  . Момент импульса мат точки отн непод Т. 0

Li=ri*Ki=ri*mivi=Ri*mivi+ ri*mivi   В СИ L=1кг*м2/с Для мат точки Li= åri*mivi Главн момент внеш сил М=åМi=dL/dt Момент инерции тела – мера инертности тела во вращат движ во круг

неподвижной оси. J=mR2

1.20 Вычис моментов инерции для однород тел простой геом ф

Момент инер мат точки бескон мал массы отн оси вращ dJ=dm*R2

Момент инер тела Jz=интегр по m R2dm= интегр по v pR2dV

Т-ма Штейнера : Момент инерции относ любой оси = моменту инеции этого тела относит оси проход через центр масс тела паралейно расматриваемой оси + произв массы тела на квадрат растояния между ними J=J0+mb2  Момент инерции целиндра : радиус R масса m высота h , выделим кольцо dr площадь кольца dS=2prdr , обьем трубы dv=2p r h dr , масса dm=p2 p r h dr . Мом инерции – J=2pph интегр от R по 0 r3 = ½ pphR4=1/2 m R2

1.21 Кинет энерг вращаю тела . Закон сохр момента импульса и его связь с изотропностью пространства. Теорема НЕТЕР

Кинет энерг тела движ произвольным оьразом = сумме всех мат точек , на кот тело можно разбить. EK=½ åmivi Тело вращ вокруг не подв оси EK=Jzw2/2  Работа точки dAi=Jizwdw тела dA=Jzwdw Полная работа A=интегр от w2 по w1 Jzwdw  Поступ движ твердого тела со скоростью его центра инерции vc. – d(mvc)/dt=Fвнеш  Вращат твердого тела вокруг центра инерц dLc/dt=Mс внеш – глав момент внеш сил относ точки С, Lc- момент ипульса тела отн точк Кинет энер свобод твер тела т-ма Кенига Ек=mvc2/2+Jcw2/2 Момент импульса замкн сист тел отн любой неподвиж точки постоянен во времени. Для замкн системы (Мz=0) закон сохр момента импульса отн оси вращ åLiz=åJizwI=const  Т-ма Э.Нетер Для физич сис-мы, ур-е движения которой имеют форму системы дифференцирова- ных ур-й и могут быть получены из вариционого принцыпа меха-ники, каждому непрер зависящему от одного параметра преобра-зованию ост-щим инвариантным действие S, соотв закон сохран.   

1,2 Элементы кинематики М Т  Ур-е движ. , скорости.       

1.3 Ускорение матерьяльной точки Нормальное и тангациональное       ускорение. Радиус кривизны траектории.

1.4 Закон динамики Ньютона

1.5 Основной закон динамики материальной точки. II зак Ньютона

1.6 Внешние и внутрение силы . 3 закон Ньютона.

1.7 Поступательное движение твердого тела. Центр масс механи- ческой. Системы и закон его движения.

1.8 Закон сохранения импульса и его связь с однородностью пространства

1.9a Движение тела переменой массы ( ур Мещерского)

1.9 b Абсолютно неупругий удар шаров.

1,10 Энергия как универ мера различных форм движен материи

1,11 Работа силы. (вторая сторона)**************

1.12 Кинетиче энергия и ее связь с работ внеш внут сил  

1.13 Поле как форма материи, осущ силовое взаимодействие между частицами вещества

1.14 Потенциальная эн-я мат точки во внешнем силовом поле и ее связь с силой. Действущей на матерьяльную точку

1.15 Потенц энерг системы, мат точки в поле централных сил  потенциал и напряжонность поля

1,16 Закон сохран мех эн. И его связь с однородностью времени

закон сохранения и превращени энергии как проявление неуничтожимости материи и ее материи

1.17 Удар абсолютно неупругих и упругих тел.

1.18 Вращательное движение Угловые скор. и ускор. Связь с            линейной скоростью и ускорением точек вращающегося тела.

**********ВтораЯ шпора ************

1.19 Момент силы и момент импульс мех сист Момент импульса тела относит неподв оси вращения.  Момент инерции относительно оси . Уравн ддинамики вращательного движения

1.20 Вычис моментов инерции для однород тел простой геом форм

1.21 Кинет энерг вращаю тела . Закон сохр момента импульса и его связь с изотропностью пространства. Теорема НЕТЕР