Эконометрика (Яковлева А.В.) |
Общая модель парной (однофакторной) регрессииОбщая модель парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений. Регрессионным анализом называется определение аналитического выражения связи между исследуемыми переменными, в котором изменение результативной переменной происходит под влиянием факторной переменной. Модель регрессии или уравнение регрессии позволяет количественно оценить взаимосвязь между исследуемыми переменными. Предположим, что имеется набор значений двух переменных: yi (результативная переменная) и xi (факторная переменная). Между этими переменными существует зависимость вида: y = f (x). Задача регрессионного анализа состоит в том, чтобы по данным наблюдений определить такую функцию = f (x), которая наилучшим образом описывала исследуемую зависимость между переменными. Для определения аналитической формы зависимости между исследуемыми переменными применяются следующие методы: 1) графический метод или визуальная оценка характера связи. В этом случае на линейном графике по оси абсцисс откладываются значения факторной переменной х, а по оси ординат – значения результативной переменной у. Затем на пересечении соответствующих значений отмечаются точки. Полученный точечный график в системе координат (х, у) называется корреляционным полем. Линия, которая соединяет точки на графике, называется эмпирической линией. По её виду можно судить не только о наличии, но и о форме зависимости между изучаемыми переменными; 2) на основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности; 3) определение аналитической формы зависимости между переменными экспериментальным путём. При исследовании зависимости между двумя переменными чаще всего используется линейная форма связи. Это связано с двумя обстоятельствами:
Общий вид модели парной регрессии зависимости переменной у от переменной х: yi=0+1xi+i, где yi– результативные переменные, i=1,n; xi– факторные переменные, i=1,n; 0, 1 – параметры модели регрессии, подлежащие оцениванию; i – случайная ошибка модели регрессии. Данная величина является случайной, она характеризует отклонения реальных значений результативных переменных от теоретических, рассчитанных по уравнению регрессии. Присутствие случайной ошибки в модели регрессии порождено следующими источниками: 1) нерепрезентативность выборки. Модель парной регрессии в большинстве случаев является большим упрощением истинной зависимости между переменными, потому что в модель входит только одна факторная переменная, не способная полностью объяснить вариацию результативной переменной. При этом результативная переменная может быть подвержена влиянию множества других факторных переменных в гораздо большей степени; 2) ошибки, возникающие при измерении данных; 3) неправильная функциональная спецификация модели. Коэффициент 1, входящий в модельпарной регрессии, называется коэффициентом регрессии. Он характеризует, на сколько в среднем изменится результативная переменная у при условии изменения факторной переменной х на единицу своего измерения. Знак коэффициента регрессии указывает на направление связи между переменными:
Коэффициент 0, входящий в модель парной регрессии, трактуется как среднее значение результативной переменной у при условии, что факторная переменная х равна нулю. Но если факторная переменная не имеет и не может иметь нулевого значения, то подобная трактовка коэффициента 0 не имеет смысла. Общий вид модели парной регрессии в матричном виде: Y= X* + , где – случайный вектор-столбец значений результативной переменной размерности n x 1; – матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент 0 умножается на единицу; – вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1; – случайный вектор-столбец ошибок модели регрессии размерности n x 1. Яковлева А.В. Эконометрика |